Фискальная политика в многострановой модели общего экономического равновесия. Кристина Нестерова

Чтение книги онлайн.

Читать онлайн книгу Фискальная политика в многострановой модели общего экономического равновесия - Кристина Нестерова страница 2

Фискальная политика в многострановой модели общего экономического равновесия - Кристина Нестерова Научные доклады: экономика

Скачать книгу

когорте возраста а и принадлежащего к классу продуктивности к, в периоде t обозначен через с(а, t, к). Время, которое данный агент тратит на досуг, обозначено через l(а, t, к), а е является специальным параметром полезности от индивидуального досуга. Однопериодная функция полезности агента является CES-функцией от потребления и времени индивидуального досуга, а соответствующий параметр внутривременной эластичности замещения обозначен через р. Вероятность, с которой агент, чей возраст в периоде t равен а, доживет до периода i, обозначена через Р(а, i, t). Смертность в модели не зависит от класса продуктивности агента. Параметры δ и γ характеризуют межвременные предпочтения домохозяйств.

      Общая собственная полезность агента, таким образом, равна сумме взвешенных CES-агрегаторов будущего потребления и досуга, а взвешивающими множителями выступают вероятности дожития и факторы временных предпочтений.

      Полезность, которую агент получает от уровня потребления его детей, имеет вид, сходный с видом функции собственной полезности. Так в полезность родителя входит дисконтированная сумма полезности от будущего потребления всех его детей, включая тех, чье рождение ожидается в будущем. Вид соответствующей функции следующий:

      В периоде t рассмотрим агента, который относится к когорте возраста a и классу производительности k. Число детей, которые у него будут, когда агент достигнет возраста i, обозначим через KID(a, i, t, k), а потребление каждого ребенка – через cK(a, i, t, k).

      Если ввести дополнительное обозначение d(a, z, t) для вероятности, с которой агент заданного поколения умрет в возрасте равном ровно z, то вероятность дожития P(a, i, t) можно представить в виде:

      Совокупная стоимость активов, которыми в периоде t располагает агент, относящийся к классу производительности k и принадлежащий поколению возраста a, обозначим через A(a, t, k). В каждом периоде агент получает доход от предложения труда, платит налоги и получает трансферты, получает наследство от родителя и затрачивает средства на собственное потребление и потребление своих детей. В соответствии с предположениями модели, в каждый период времени у агента есть общий запас времени, который он может распределить между досугом, входящим в его функцию полезности, и рабочим временем. Общий запас доступного времени обозначим как h(a, t), тогда время, которое агент будет предлагать на рынке труда, равно h(a, t) – l(a, t, k). Обозначив зарплату, выплачиваемую за единицу рабочего времени, через w(t, k), можно получить выражение для трудового дохода агента в виде:

      Общие затраты на потребление (собственное и потребление детей) представляются в виде:

      Наследство, полученное агентом, обозначим как I(a, t, k). Чистую стоимость уплачиваемых агентом налогов обозначим через T(a, t, k). Тогда, если обозначить ставку доходности как r(t), уравнение, описывающее динамику стоимости активов, принадлежащей

Скачать книгу