Man's Place in the Universe. Alfred Russel Wallace
Чтение книги онлайн.
Читать онлайн книгу Man's Place in the Universe - Alfred Russel Wallace страница 12
The late Mr. Proctor in 1871 laid down on a chart two feet diameter all the stars down to magnitude 91/2 given in Agrelander's forty large charts of the stars visible in the northern hemisphere. They were 324,198 in number, and they distinctly showed by their greater density not only the whole course of the Milky Way but also its more luminous portions and many of the curious dark rifts and vacuities, which latter are almost wholly avoided by these stars.
Later on Professor Seeliger of Munich made an investigation of the relation of more than 135,000 stars down to the ninth magnitude to the Milky Way, by dividing the whole of the heavens into nine regions, one and nine being circles of 20° wide (equal to 40° diameter) at the two poles of the Galaxy; the middle region, five, is a zone 20° wide including the Milky Way itself, and the other six intermediate zones are each 20° wide. The following table shows the results as given by Professor Newcomb, who has made some alterations in the last column of 'Density of Stars' in order to correct differences in the estimate of magnitudes by the different authorities.
N.B.—The inequality of the N. and S. areas is because the enumeration of the stars only went as far as 24° S. Decl., and therefore included only a part of Regions VII., VIII., and IX.
DIAGRAM OF STAR-DENSITY
From Herschel's Gauges
(as given by Professor Newcomb, p. 251).
Upon this table of densities Professor Newcomb remarks as follows:—'The star-density in the several regions increases continuously from each pole (regions I. and IX.) to the Galaxy itself (region V.). If the latter were a simple ring of stars surrounding a spherical system of stars, the star-density would be about the same in regions I., II., and III., and also in VII., VIII., and IX., but would suddenly increase in IV. and VI. as the boundary of the ring was approached. Instead of such being the case, the numbers 2.78, 3.03, and 3.54 in the north, and 3.14, 3.21, and 3.71 in the south, show a progressive increase from the galactic pole to the Galaxy itself. The conclusion to be drawn is a fundamental one. The universe, or at least the denser portion of it, is really flattened between the galactic poles, as supposed by Herschel and Struve.'
But looking at the series of figures in the table, and again as quoted by Professor Newcomb, they seem to me to show in some measure what he says they do not show. I therefore drew out the above diagram from the figures in the table, and it certainly shows that the density in regions I., II., and III., and in regions VII., VIII., and IX., may be said to be 'about the same,' that is, they increase very slowly, and that they do 'suddenly increase' in IV. and VI. as the boundary of the Galaxy is approached. This may be explained either by a flattening towards the poles of the Galaxy, or by the thinning out of stars in that direction.
In order to show the enormous difference of star-density in the Galaxy and at the galactic poles, Professor Newcomb gives the following table of the Herschelian gauges, on which he only remarks that they show an enormously increased density in the galactic region due to the Herschels having counted so many more stars there than any other observers.
DIAGRAM OF STAR-DENSITY
From a table in The Stars (p. 249).
But an important characteristic of these figures is, that the Herschels alone surveyed the whole of the heavens from the north to the south pole, that they did this with instruments of the same size and quality, and that from almost life-long experience in this particular work they were unrivalled in their power of counting rapidly and accurately the stars that passed over each field of view of their telescopes. Their results, therefore, must be held to have a comparative value far above those of any other observer or combination of observers. I have therefore thought it advisable to draw a diagram from their figures, and it will be seen how strikingly it agrees with the former diagram in the very slow increase of star-richness in the first three regions north and south, the sudden increase in regions IV. and VI. as we approach the Galaxy, while the only marked difference is in the enormously greater richness of the Galaxy itself, which is an undoubtedly real phenomenon, and is brought out here by the unrivalled observing power of the two greatest astronomers in this special department that have ever lived.
We shall find later on that Professor Newcomb himself, as the result of a quite different inquiry arrives at a result in accordance with these diagrams which will then be again referred to. As this is a very interesting subject, it will be well to give another diagram from two tables of star-density in Sir John Herschel's volume already quoted. The tables are as follows:—
In these tables the Milky Way itself is taken as occupying two zones of 15° each, instead of one of 20° as in Professor Newcomb's tables, so that the excess in the number of stars over the other zones is not so large. They show also a slight preponderance in all the zones of the southern hemisphere, but this is not great, and may probably be due to the clearer atmosphere of the Cape of Good Hope as compared with that of England.
DIAGRAM OF STAR-DENSITY.
From Table in Sir J. Herschel's Outlines of Astronomy (10th ed., pp. 577-578).
It need only be noted here that this diagram shows the same general features as those already given, of a continuous increase of star-density from the poles of the Galaxy, but more rapidly as the Galaxy itself is more nearly approached. This fact must, therefore, be accepted as indisputable.
An important factor in the structure of the heavens is afforded by the distribution of the two classes of objects known as clusters and nebulæ. Although we can form an almost continuous series from double stars which revolve round their common centre of gravity, through triple and quadruple stars, to groups and aggregations of indefinite extent—of which the Pleiades form a good example, since the six stars visible to the naked eye are increased to hundreds by high telescopic powers, while photographs with three hours' exposure show more than 2000 stars—yet none of these correspond to the large class known as clusters, whether globular or irregular, which are very numerous, about 600 having been recorded by Sir John Herschel more than fifty years ago. Many of these are among the most beautiful and striking objects in the heavens even with a very small telescope or good opera-glass. Such is the luminous spot called Praesepe, or the Beehive in the constellation Cancer, and another in the sword handle of Perseus.
In the southern hemisphere there is a hazy star of about the fourth magnitude, Omega Centauri, which with a good telescope is seen to be really a magnificent cluster nearly two-thirds the diameter of the moon, and described by Sir John Herschel as very gradually increasing in brightness to the centre, and composed of innumerable stars of the thirteenth and fifteenth magnitudes, forming the richest and largest object of the kind in the heavens. He describes it as having rings like lace-work formed of the larger stars. By actual count, on a good photograph, there are more than 6000 stars, while other observers consider that there are at least 10,000. In the northern hemisphere one of the finest is that in the constellation Hercules, known as 13 Messier. It is just visible to the naked eye or with an opera glass as a hazy star of the sixth magnitude, but a good telescope shows it to be a globular cluster, and the great Lick telescope