Essays Upon Heredity and Kindred Biological Problems. Weismann August

Чтение книги онлайн.

Читать онлайн книгу Essays Upon Heredity and Kindred Biological Problems - Weismann August страница 23

Автор:
Жанр:
Серия:
Издательство:
Essays Upon Heredity and Kindred Biological Problems - Weismann August

Скачать книгу

cases in which, apparently, acquired variations of characters are transmitted without natural selection playing any active part in the change. Such a case is afforded by the short-sightedness so common in civilized nations.

      This affection is certainly hereditary in some cases, and it may well have been explained as an example of the transmission of acquired changes. It has been argued that acquired short-sightedness can be in a slight degree transmitted, and that each successive generation has developed a further degree of the disease by habitually holding books etc. close to the eyes, so that the inborn predisposition to short-sightedness is continually accumulating.

      But we must remember that variations in the refraction of the human eye have been for a long time independent of the preserving control of natural selection. In the struggle for existence, a blind man would certainly disappear before those endowed with sight, but myopia does not prevent any one from gaining a living.

      A short-sighted lynx, hawk, or gazelle, or even a short-sighted Indian, would be eliminated by natural selection, but a short-sighted European of the higher class finds no difficulty in earning his bread.

      Those fluctuations on either side of the average which we call myopia and hypermetropia, occur in the same manner, and are due to the same causes, as those which operate in producing degeneration in the eyes of cave-dwelling animals. If, therefore, we not infrequently meet with families in which myopia is hereditary, such results may be attributed to the transmission of an accidental disposition on the part of the germ, instead of to the transmission of acquired short-sightedness. A very large proportion of short-sighted people do not owe their affliction to inheritance at all, but have acquired it for themselves; for there is no doubt that a normal eye may be rendered myopic in the course of a life-time by continually looking at objects from a very short distance, even when no hereditary predisposition towards the disease can be shown to exist. Such a change would of course appear more readily if there was also a corresponding predisposition on the part of the eye. But I should not explain this widely spread predisposition towards myopia as due to the transmission of acquired short-sightedness, but to the greater variability of the eye, which necessarily results from the cessation of the controlling influence of natural selection.

      This suspension of the preserving influence of natural selection may be termed Panmixia, for all individuals can reproduce themselves and thus stamp their characters upon the species, and not only those which are in all respects, or in respect to some single organ, the fittest. In my opinion, the greater number of those variations which are usually attributed to the direct influence of external conditions of life, are to be ascribed to panmixia. For example, the great variability of most domesticated animals essentially depends upon this principle.

      A goose or a duck must possess strong powers of flight in the natural state, but such powers are no longer necessary for obtaining food when it is brought into the poultry-yard, so that a rigid selection of individuals with well-developed wings, at once ceases among its descendants. Hence in the course of generations, a deterioration of the organs of flight must necessarily ensue, and the other members and organs of the bird will be similarly affected.

      This example very clearly indicates that the degeneration of an organ does not depend upon its disuse; for although our domestic poultry very rarely make use of their wings, the muscles of flight have not disappeared, and, at any rate in the goose, do not seem to have undergone any marked degeneration.

      The numerous and exact observations conducted by Darwin upon the weight and measurement of the bones in domestic fowls, seem to me to possess a significance beyond that which he attributed to them.

      If the weight of the wing-bones of the domestic duck bears a smaller proportion to the weight of the leg-bones than in the wild duck, and if, as Darwin rightly assumes, this depends not only upon the diminution of the wings, but also upon the increase of the legs, it by no means follows that this latter increase in organs which are now more frequently used, is dependent upon hereditary influences alone.

      It is quite possible that it depends, on the one hand, upon the suspension of natural selection, or panmixia (and these effects would be transmitted), and on the other hand upon the direct influence of increased use during the course of a single life. We do not yet know with any accuracy, the amount of change which may be produced by increased use in the course of a single life. If it is desired to prove that use and disuse produce hereditary effects without the assistance of natural selection, it will be necessary to domesticate wild animals (for example the wild duck) and preserve all their descendants, thus excluding the operation of natural selection. If then all individuals of the second, third, fourth and later generations of these tame ducks possess identical variations, which increase from generation to generation, and if the nature of these changes proves that they must have been due to the effect of use or disuse, then perhaps the transmission of such effects may be admitted; but it must always be remembered that domestication itself influences the organism,—not only directly, but also indirectly, by the increase of variability as a result of the suspension of natural selection. Such experiments have not yet been carried out in sufficient detail49.

      It is usually considered that the origin and variation of instincts are also dependent upon the exercise of certain groups of muscles and nerves during a single life-time; and that the gradual improvement which is thus caused by practice, is accumulated by hereditary transmission. I believe that this is an entirely erroneous view, and I hold that all instinct is entirely due to the operation of natural selection, and has its foundation, not upon inherited experiences, but upon the variations of the germ.

      Why, for instance, should not the instinct to fly from enemies have arisen by the survival of those individuals which are naturally timid and easily startled, together with the extermination of those which are unwary? It may be urged in opposition to this explanation that the birds of uninhabited islands which are not at first shy of man, acquire in a few generations an instinctive dread of him, an instinct which cannot have arisen in so short a time by means of natural selection. But, in this case are we really dealing with the origin of a new instinct, or only with the addition of one new perception (‘Wahrnehmung,’ Schneider)50, of the same kind as those which incite to the instinct of flight—an instinct which had been previously developed in past ages but had never been called forth by man? Again, has any one ascertained whether the young birds of the second or third generation are frightened by man? May it not be that the experience of a single life-time plays a great part in the origin of the habit? For my part, I am inclined to believe that the habit of flying from man is developed in the first generation which encounters him as a foe51. We see how wary and cautious a flock of birds become as soon as a few shots have been fired at them, and yet shortly before this occurrence they were perhaps playing carelessly close to the sportsmen. Intelligence plays a considerable part in the life of birds, and it by no means follows that the transmission of individual habits explains the above-mentioned phenomena. The long-continued operation of natural selection may very well have been necessary before the perception of man could awake the instinct to flee in young, inexperienced birds. Unfortunately the observations upon these points are far too indefinite to enable us to draw conclusions.

      There is again the frequently-quoted instance of the young pointer, ‘which, untrained, and without any example which might have been imitated, pointed at a lizard in a subtropical jungle, just as many of its forefathers had pointed at partridges on the plain of St. Denis,’ and which, without knowing the effect of a shot, sprang forward barking, at the first discharge, to bring in the game. This conduct must not be attributed to the inheritance of any mental picture, such as the effect of a shot, but to the inheritance of a certain reflex mechanism. The young pointer does not spring forward at the shot because he has inherited from his forefathers a certain association of ideas,—shot and game,—but because he has inherited a reflex mechanism, which impels him to start forward on hearing a report. We cannot yet determine without more experiments how such an impulse due to perception (‘Wahrnehmungstrieb,’

Скачать книгу


<p>49</p>

C. Darwin, ‘Variation of Animals and Plants under Domestication.’ Vol. I.

<p>50</p>

Compare ‘Der thierische Wille,’ Leipzig, 1880.

<p>51</p>

Steller’s interesting account of the Sea-cow (Rhytina Stelleri) proves that this suggestion is valid. This large mammal was living in great numbers in Behring Strait at the end of the last century, but has since been entirely exterminated by man. Steller, who was compelled by shipwreck to remain in the locality for a whole year, tells us that the animals were at first without any fear of man, so that they could be approached in boats and could thus be killed. After a few months however the survivors became wary, and did not allow Steller’s men to approach them, so that they were difficult to catch.—A. W., 1888.