The Energy System of Matter: A Deduction from Terrestrial Energy Phenomena. James Weir
Чтение книги онлайн.
Читать онлайн книгу The Energy System of Matter: A Deduction from Terrestrial Energy Phenomena - James Weir страница 1
The Energy System of Matter: A Deduction from Terrestrial Energy Phenomena
PREFACE
An intimate study of natural phenomena and a lengthened experience in physical research have resulted in the formation of certain generalisations and deductions which I now present in this volume. I have reached the conclusion that every physical phenomenon is due to the operation of energy transformations or energy transmissions embodied in material, and takes place under the action or influence of incepting energy fields. In any instance the precise nature of the phenomena is dependent on the peculiar form of energy actively engaged, on the nature of the material to which this energy is applied, and on the nature of the incepting field which influences the process. In the course of the work several concrete cases are discussed, in which these features of energy are illustrated and explained by the use of simple experimental apparatus. It is hoped that, by this means, the distinctive differences which exist in the manifestations of energy, in its transformation, in its transmission, and in its incepting forms will be rendered clear to the reader. I have to express my indebtedness to Mr. James Affleck, B.Sc., for his assistance in the preparation of this work for publication.
Over Courance,
Lockerbie, Scotland.
INTRODUCTION
The main principles on which the present work is founded were broadly outlined in the author's Terrestrial Energy in 1883, and also in a later paper in 1892.
The views then expressed have since been amply verified by the course of events. In the march of progress, the forward strides of science have been of gigantic proportions. Its triumphs, however, have been in the realm, not of speculation or faith, but of experiment and fact. While, on the one hand, the careful and systematic examination and co-ordination of experimental facts has ever been leading to results of real practical value, on the other, the task of the theorists, in their efforts to explain phenomena on speculative grounds, has become increasingly severe, and the results obtained have been decreasingly satisfactory. Day by day it becomes more evident that not one of the many existing theories is adequate to the explanation of the known phenomena: but, in spite of this obvious fact, attempts are still constantly being made, even by most eminent men, to rule the results of experimental science into line with this or that accepted theory. The contradictions are many and glaring, but speculative methods are still rampant. They have become the fashion, or rather the fetish, of modern science. It would seem that no experimental result can be of any value until it is deductively accommodated to some preconceived hypothesis, until it is embodied and under the sway of what is practically scientific dogma. These methods have permeated all branches of science more or less, but in no sphere has the tendency to indulge in speculation been more pronounced than in that which deals with energetics. In no sphere, also, have the consequences of such indulgence been more disastrous. For the most part, the current conceptions of energy processes are crude, fanciful, and inconsistent with Nature. They require for their support—in fact, for their very existence—the acceptance of equally fantastic conceptions of mythical substances or ethereal media of whose real existence there is absolutely no experimental evidence. On the assumed properties or motions of such media are based the many inconsistent and useless attempts to explain phenomena. But, as already pointed out, Nature has unmistakably indicated the true path of progress to be that of experimental investigation. In the use of this method only phenomena can be employed, and any hypothesis which may be formulated as the result of research on these lines is of scientific value only in so far as it is the correct expression of the actual facts observed. By this method of holding close to Nature reliable working hypotheses can, if necessary, be formed, and real progress made. It is undeniably the method of true science.
In recent years much attention has been devoted to certain speculative theories with respect to the origin and ultimate nature of matter and energy. Such hypotheses, emanating as they do from prominent workers, and fostered by the inherent imaginative tendency of the human mind, have gained considerable standing. But it is surely unnecessary to point out that all questions relating to origins are essentially outside the pale of true science. Any hypotheses which may be thus formulated have not the support of experimental facts in their conclusions; they belong rather to the realm of speculative philosophy than to that of science. In the total absence of confirmatory phenomena, such theories can, at best, only be regarded as plausible speculations, to be accepted, it may be, without argument, and ranking in interest in the order of their plausibility.
Of modern research into the ultimate constitution of matter little requires to be said. It is largely founded on certain radio-active and electrical phenomena which, in themselves, contribute little information. But aided by speculative methods and the use of preconceived ethereal hypotheses, various elaborate theories have been formulated, explaining matter and its properties entirely in terms of ethereal motions. Such conceptions in their proper sphere—namely, that of metaphysics—would be no doubt of interest, but when advanced as a scientific proposition or solution they border on the ridiculous. In the absence of phenomena bearing on the subject, it would seem that the last resort of the modern scientist lies in terminology. To the average seeker after truth, however, the term "matter," as applied to the material world, will still convey as much meaning as the more elaborate scientific definitions.
It is not the purpose of this work to add another thread to the already tangled skein of scientific theory. It is written, rather, with the conviction, that it is impossible ever to get really behind or beyond phenomena; in the belief that the complete description of any natural process is simply the complete description of the associated phenomena, which may always be observed and co-ordinated but never ultimately explained. Phenomena must ever be accepted simply as phenomena—as the inscrutable manifestations of Nature. By induction from phenomena it is indeed possible to rise to working hypotheses, and thence, it may be, to general conceptions of Nature's order, and as already pointed out, it is to this method, of accepting phenomena, and of reasoning only from experimental facts, that all the advances of modern science are due. On the other hand, it is the neglect of this method—the departure, as it were, from Nature—which has led to the introduction into the scientific thought of the day of the various ethereal media with their extreme and contradictory properties. The use of such devices really amounts to an admission of direct ignorance of phenomena. They are, in reality, an attempt to explain natural operations by a highly artificial method, and, having no basis in fact, their whole tendency is to proceed, in ever-increasing degree, from one absurdity to another.
It is quite possible to gain a perfectly true and an absolutely reliable knowledge of the properties of matter and energy, and the part which each plays, without resorting to speculative aids. All that is required is simply accurate and complete observation at first hand. The field of research is wide; all Nature forms the laboratory. By this method every result achieved may be tested and verified, not by its concurrence with any approved theory, however plausible, but by direct reference to phenomena. The verdict of Nature will be the final judgment on every scheme.
It is on these principles, allied with the great generalisations with respect to the conservation of matter and energy, that this work is founded. As the result of a long, varied, and intimate acquaintance with Nature, and much experimental research in many spheres, the author has reached the conclusion, already foreshadowed in Terrestrial Energy, that the great principle of energy conservation is true, not only in the universal and generally accepted sense, but also in a particular sense with respect to all really separate bodies, such as planetary masses in space. Each of these bodies, therefore, forms within itself a completely conservative energy system. This conclusion obviously involves the complete denial of the transmission of energy in any form across interplanetary space, and the author, in this volume, now seeks to verify the conclusion by the direct experimental evidence of terrestrial phenomena.
Under present-day conditions in science, the acceptance of the ordinary doctrine of transmission across space involves likewise the acceptance