On Germinal Selection as a Source of Definite Variation. Weismann August
Чтение книги онлайн.
Читать онлайн книгу On Germinal Selection as a Source of Definite Variation - Weismann August страница 4
This becomes more apparent on considering the details. I have remarked that the usually striking colorations of exempt butterflies, as of the Heliconids, are the same on both the upper and the lower surfaces of the wings. Possibly the expression of a law might be seen in this fact, and it might be said, the coloration of the Heliconids runs through from the upper to the under surface. But among numerous imitators of the Heliconids is the genus Protogonius, which has the coloration of the Heliconids on its upper surface, but on its lower exhibits a magnificent leaf-design. During flight it appears to be a Heliconid and at rest a leaf. How is it possible that two such totally different types of coloration should be combined in a single species, if any sort of inner rigorous necessity existed, regulating the coloration of the two wing-surfaces? Now, although we are unable to prove that the Protogonius species would have perished unless they possessed this duplex coloration, yet it would be nothing less than intellectual blindness to deny that the butterflies in question are effectively protected, both at rest and during flight, that their colorations are adaptive. We do not know their primitive history, but we shall hardly go astray if we assume that the ancestors of the Protogonius species were forest-butterflies and already possessed an under surface resembling a leaf. By this device they were protected when at rest. Afterwards, when this protection was no longer sufficient, they acquired on their upper surface the coloration of the exempt species with which they most harmonised in abode, habits of life, and outward appearance.
At the same time it is explained why these butterflies did not acquire the coloration of the Heliconids on the under surface. The reason is, that in the attitude of repose they were already protected, and that in an admirable manner.
That exempt diurnal butterflies should be colored on the upper and under surfaces alike, and should never resemble in the attitude of repose their ordinary surroundings, is intelligible when we reflect that it is a much greater protection to be despised when discovered than to be well, or very well, but never absolutely, protected from discovery.
It has been so often reiterated that diurnal butterflies, as a rule, are protectively colored on the under surfaces, that one has some misgivings in stating the fact again. And yet the least of those who hold this to be a trivial commonplace know how strongly its implications militate against the inner motive and formative forces of the organism, which are ever and anon appealed to. No less than sixty-two genera are counted today in the family of diurnal butterflies known as the Nymphalidæ. Of these by far the largest majority are sympathetically colored underneath, that is, they show in the posture of rest the colorings of their usual environment. In a large number of the species belonging to this group the entire surface of the hind wings possesses such a sympathetic coloration, as does also the distant apex of the fore wings. Why? The reason is obvious. This part only of the fore wing is visible in the attitude of repose. Here, then,—as a zealous opponent of the theory of selection once exclaimed,—there is undoubted "correlation" between the coloring of the surface of the hind wing and of the apex of the fore wing. Correlation is unquestionably a fine word, but in the present instance it contributes nothing to the understanding of the problem, for there are near relatives and often species of the same genera in which this correlation is not restricted to the apex of the fore wings, but extends to a third or even more of their wings, and these species are also in the habit of drawing back their wings less completely in the state of rest, thus rendering a larger portion of them visible. There are species, too, like the forest-butterflies of South America just mentioned, the Protogonius, Anæa, Kallima species, etc., which have nearly the whole of the under surfaces of their fore wings marked according to the same pattern with their hind wings, and these butterflies when at rest hold their fore wings free and uncovered by their hind wings. Where are the formative laws in such cases?
Or, perhaps some one will say: "The covering by the hind wings hinders the formation of scales on the wing, or impedes the formation of the colors in the scales." Such a person should examine one of these species. He will find that the scales are just as dense on the covered as on the uncovered surface of the wing, and in many species, for example, in Katagramma, the scales of the covered surface are colored most brilliantly of all.
But the facts are still more irresistible, when we consider special adaptations; for example, the imitation of leaves, which is so often cited. It is to be noted, first, that this sort of imitation is by no means restricted to a few genera, still less to a few species. All the numerous species of the genus Anæa, which are distributed over the forests of tropical South America, exhibit this imitation in pronounced and varied forms, as do likewise the American genera Hypna and Siderone, the Asiatic Symphaedra, the African Salamis, Eurypheme, etc. I have observed fifty-three genera in which it is present in one, several, or in many species, but there are many others.
These genera, now, are by no means all so nearly allied that they could have inherited the leaf-markings from a common ancestral form. They belong to different continents and have probably for the most part acquired their protective colorings themselves. But one resemblance they have in common—they are all forest-butterflies. Now what is it that has put so many genera of forest-butterflies and no others into positions where they could acquire this resemblance to leaves? Was it directive formative laws? If we closely examine the markings by which the similarity of the leaf is determined, we shall find, for example, in Kallima Inachis, and Parallecta, the Indian leaf-butterflies, that the leaf-markings are executed in absolute independence of the other uniformities governing the wing.
From the tail of the wing to the apex of the fore wings runs with a beautiful curvature a thick, doubly-contoured dark line accompanied by a brighter one, representing the midrib of the leaf. This line cuts the "veins" and the "cells" of the wing in the most disregardful fashion, here in acute and here in obtuse angles, and in absolute independence of the regular system of divisions of the wing, which should assuredly be the expression of the "formative law of the wing," if that were the product of an internal directive principle. But leaving this last question aside, this much is certain with regard to the markings, that they are dependent, not on an internal, but on an external directive power.
Should any one be still unconvinced by the evidence we have adduced, let him give the leaf-markings a closer inspection. He will find that the midrib is composed of two pieces of which the one belongs to the hind wing and the other to the fore wing, and that the two fit each other exactly when the butterfly is in the attitude of repose, but not otherwise. Now these two pieces of the leaf-rib do not begin on corresponding spots of the two wings, but on absolutely non-identical spots. And the same is also true of the lines which represent the lateral ribs of the leaf. These lines proceed in acute angles from the rib; to the right and to the left in the same angle, those of the same side parallel with each other. Here, too, no relation is noticeable between the parts of the wings over which the lines pass. The venation of the wing is utterly ignored by the leaf-markings, and its surface is treated as a tabula rasa upon which anything conceivable can be drawn. In other words, we are presented here with a bilaterally symmetrical figure engraved on a surface which is essentially radially symmetrical in its divisions.
I lay unusual stress upon this point because it shows that we are dealing here with one of those cases which cannot be explained by mechanical, that is, by natural means, unless natural selection actually exists and is actually competent to create new properties; for the Lamarckian principle is excluded here ab initio, seeing that we are dealing with a formation which is only passive in its effects; the leaf-markings are effectual simply by their existence and not by any function which they perform; they are present in flight as well as at rest, during the absence of danger, as well as during the approach of an enemy.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».