Practical Exercises in Elementary Meteorology. Robert DeCourcy Ward

Чтение книги онлайн.

Читать онлайн книгу Practical Exercises in Elementary Meteorology - Robert DeCourcy Ward страница 7

Автор:
Жанр:
Серия:
Издательство:
Practical Exercises in Elementary Meteorology - Robert DeCourcy Ward

Скачать книгу

an equal number of times. The number of calms should also be recorded.

       Rainfall.—The total monthly precipitation is obtained by adding together all the separate amounts of rainfall noted in your record book, and expressing the total, in inches and hundredths, at the bottom of the rainfall column. You now have the means for comparing one month’s rainfall with that of another month, and of seeing how these amounts vary.

      Examine carefully also your non-instrumental observations. See whether you can draw any general conclusions as to the greater prevalence of cloud, or of rain or snow, in one month than in another. Did the last month have more high winds than the one before? Or than the average? Were the temperature changes more sudden and marked? Was there more or less precipitation than in previous months?

      CHAPTER III.

      ADVANCED INSTRUMENTAL OBSERVATIONS

      The instruments for more advanced study are the following: maximum and minimum thermometers, wet and dry-bulb thermometers, sling psychrometer, standard barometer, thermograph, barograph, and anemometer.

      Fig. 7.

      Maximum and minimum thermometers are usually mounted together on a board, as shown in Fig. 7, the lower one of the two being the maximum, and the upper the minimum. In the view of the instrument shelter (Fig. 2), these thermometers are seen on the left. The minimum thermometer, when attached to its support, is either exactly horizontal or else slopes downward somewhat towards the bulb end, as shown in Fig. 7. These instruments, as their names imply, register the highest and the lowest temperatures, respectively, which occur during each day of 24 hours. The maximum thermometer is filled with mercury. Its tube is narrowed just above the bulb, in such a way that the mercury passes through the constriction with some difficulty. As the temperature rises, the mercury, in expanding, is forced out from the bulb through this narrow passage. When the temperature falls, however, the mercury above this point cannot get back into the bulb, there being nothing to force it back. The length of the mercury column, therefore, remains the same as it was when the temperature was highest, and the instrument is read by observing the number of degrees indicated by the top, or right-hand end, of the mercury column upon the scale. After reading, the thermometer is set by removing the brass pin upon which the bulb end rests, and whirling the instrument rapidly around the pin to which its upper end is fastened. By this process the mercury is driven back into the bulb, past the constriction. Care must be taken to stop the thermometer safely while it is whirling. After setting, the reading of the maximum thermometer should agree closely with that of the ordinary or dry-bulb thermometer.

      The minimum thermometer is filled with alcohol, and contains within its tube a small black object, called the index, which resembles a double-headed black pin. The instrument is so constructed that this index, when placed with its upper, or right-hand end, at the surface of the alcohol, is left behind, within the alcohol, when the temperature rises. On the other hand, when the temperature falls, the index is drawn towards the bulb by the surface cohesion of the alcohol, the top or right end of the index thus marking the lowest temperature reached. The upper end of the thermometer is firmly fastened, by means of a screw, to a brass support, while the lower end rests upon a notched arm. In setting this instrument, the bulb end is raised until the index slides along the tube to the end of the alcohol column. The thermometer is then carefully lowered back into the notch just referred to. Maximum and minimum thermometers need to be read only once a day, in the evening. The temperatures then recorded are the highest and lowest reached during the preceding 24 hours. The observation hour is preferably 8 P.M., but if this is inconvenient, or impracticable, the reading may be made earlier in the afternoon. The hour, however, should be as late as possible, and should not be varied from day to day. The maximum temperature sometimes occurs in the night. The maximum and the minimum temperatures should be entered every day, in a column headed “Maximum and Minimum Temperatures,” in your record book.

      The wet- and dry-bulb thermometers, together commonly known as the psychrometer (Greek: cold measure), are simply two ordinary mercurial thermometers, the bulb of one of which is wrapped in muslin, and kept moist by means of a wick leading from the muslin cover to a small vessel of water attached to the frame (see Fig. 8). The wick carries water to the bulb just as a lamp wick carries oil to the flame. The psychrometer is seen inside the shelter on the right in Fig. 2.

      Fig. 8.

      The air always has more or less moisture in it. Even the hot, dry air of deserts contains some moisture. This moisture is either invisible or visible. When invisible it is known as water vapor, and is a gas. When visible, it appears as clouds and fog, or in the liquid or solid form of rain, snow, and hail. The amount of moisture in the air, or the humidity of the air, varies according to the temperature and other conditions. When the air contains as much water vapor as it can hold, it is said to be saturated. Its humidity is then high. When the air is not saturated, evaporation goes on into it from moist surfaces and from plants. Water which changes to vapor is said to evaporate.

      This process of evaporation needs energy to carry it on, and this energy often comes from the heat of some neighboring body. When you fan yourself on a very hot day in summer, the evaporation of the moisture on your face takes away some of the heat from the skin, and you feel cooler. The drier the air on a hot day, the greater is the evaporation from all moist bodies, and hence the greater the amount of cooling of the surfaces of those bodies. For this reason a hot day in summer, when the air is comparatively dry, that is, not saturated with moisture, is cooler, other things being equal, than a hot day when the air is very moist. Over deserts the air is often so hot and dry that evaporation from the face and hands is very great, and the skin is burned and blistered. Over the oceans, near the equator, the air is hot and excessively damp, so that there is hardly any cooling of the body by evaporation, and the conditions are very uncomfortable. This region is known as the “Doldrums.”

      The temperatures that are felt at the surface of the skin, especially where the skin is exposed, as on the face and hands, have been named sensible temperatures. Our sense of comfort in hot weather depends on the sensible temperatures. These sensible temperatures are not the same as the readings of the ordinary (dry-bulb) thermometer, because our sensation of heat or cold depends very largely on the amount of evaporation from the surface of the body, and the temperature of evaporation is obtained by means of the wet-bulb thermometer. Wet-bulb readings at the various stations of the Weather Bureau are entered on all our daily weather maps. In summer (July) the sensible (wet-bulb) temperatures are 20° below the ordinary air temperature in the dry southwestern portion of the United States (Nevada, Arizona, Utah). The mean July sensible temperatures there are from 50° to 65°; while on the Atlantic coast, from Boston to South Carolina, they are between 65° and 75°. Hence over the latter district the temperatures actually experienced in July average higher than in the former.

      Unless the air is saturated with water vapor, the evaporation from the surface of the wet-bulb thermometer will lower the temperature indicated by that instrument below that shown by the dry-bulb thermometer next to it, from which there is no evaporation. The drier the air, the greater the evaporation, and therefore the greater the difference between the readings of the two thermometers. By means of tables, constructed on the basis of laboratory experiments, we may, knowing the readings of the wet and dry-bulb thermometers, easily determine the dew-point and the relative humidity of the air—important factors in meteorological observations (see Chapter XXVI). In winter, when the temperature is below freezing, the muslin of the wet-bulb thermometer should be moistened with water a little while before a reading is to be made. The amount of water vapor which air can contain depends on the temperature of the air. The higher the temperature, the greater is the capacity of the air for water vapor. Hence it follows that, if the temperature is lowered when air is saturated, the capacity of the

Скачать книгу