The Stones of Venice, Volume 1 (of 3). Ruskin John
Чтение книги онлайн.
Читать онлайн книгу The Stones of Venice, Volume 1 (of 3) - Ruskin John страница 17
§ IX. So far of the true cornice: we have still to determine the form of the dripstone.
Fig. VI.
We go back to our primal type or root of cornice, a of Fig. V. We take this at a in Fig. VI., and we are to consider it entirely as a protection against rain. Now the only way in which the rain can be kept from running back on the slope of X is by a bold hollowing out of it upwards, b. But clearly, by thus doing, we shall so weaken the projecting part of it that the least shock would break it at the neck, c; we must therefore cut the whole out of one stone, which will give us the form d. That the water may not lodge on the upper ledge of this, we had better round it off; and it will better protect the joint at the bottom of the slope if we let the stone project over it in a roll, cutting the recess deeper above. These two changes are made in e: e is the type of dripstones; the projecting part being, however, more or less rounded into an approximation to the shape of a falcon’s beak, and often reaching it completely. But the essential part of the arrangement is the up and under cutting of the curve. Wherever we find this, we are sure that the climate is wet, or that the builders have been bred in a wet country, and that the rest of the building will be prepared for rough weather. The up cutting of the curve is sometimes all the distinction between the mouldings of far-distant countries and utterly strange nations.
Fig. VII.
Fig. VII. representing a moulding with an outer and inner curve, the latter undercut. Take the outer line, and this moulding is one constant in Venice, in architecture traceable to Arabian types, and chiefly to the early mosques of Cairo. But take the inner line; it is a dripstone at Salisbury. In that narrow interval between the curves there is, when we read it rightly, an expression of another and mightier curve,—the orbed sweep of the earth and sea, between the desert of the Pyramids, and the green and level fields through which the clear streams of Sarum wind so slowly.
Fig. VIII.
And so delicate is the test, that though pure cornices are often found in the north,—borrowed from classical models,—so surely as we find a true dripstone moulding in the South, the influence of Northern builders has been at work; and this will be one of the principal evidences which I shall use in detecting Lombard influence on Arab work; for the true Byzantine and Arab mouldings are all open to the sky and light, but the Lombards brought with them from the North the fear of rain, and in all the Lombardic Gothic we instantly recognize the shadowy dripstone: a, Fig. VIII., is from a noble fragment at Milan, in the Piazza dei Mercanti; b, from the Broletto of Como. Compare them with c and d; both from Salisbury; e and f from Lisieux, Normandy; g and h from Wenlock Abbey, Shropshire.
§ X. The reader is now master of all that he need know about the construction of the general wall cornice, fitted either to become a crown of the wall, or to carry weight above. If, however, the weight above become considerable, it may be necessary to support the cornice at intervals with brackets; especially if it be required to project far, as well as to carry weight; as, for instance, if there be a gallery on top of the wall. This kind of bracket-cornice, deep or shallow, forms a separate family, essentially connected with roofs and galleries; for if there be no superincumbent weight, it is evidently absurd to put brackets to a plain cornice or dripstone (though this is sometimes done in carrying out a style); so that, as soon as we see a bracket put to a cornice, it implies, or should imply, that there is a roof or gallery above it. Hence this family of cornices I shall consider in connection with roofing, calling them “roof cornices,” while what we have hitherto examined are proper “wall cornices.” The roof cornice and wall cornice are therefore treated in division D.
We are not, however, as yet nearly ready for our roof. We have only obtained that which was to be the object of our first division (A); we have got, that is to say, a general idea of a wall and of the three essential parts of a wall; and we have next, it will be remembered, to get an idea of a pier and the essential parts of a pier, which were to be the subjects of our second division (B).
CHAPTER VII.
THE PIER BASE
§ I. In § III. of Chap. III., it was stated that when a wall had to sustain an addition of vertical pressure, it was first fitted to sustain it by some addition to its own thickness; but if the pressure became very great, by being gathered up into Piers.
I must first make the reader understand what I mean by a wall’s being gathered up. Take a piece of tolerably thick drawing-paper, or thin Bristol board, five or six inches square. Set it on its edge on the table, and put a small octavo book on the edge or top of it, and it will bend instantly. Tear it into four strips all across, and roll up each strip tightly. Set these rolls on end on the table, and they will carry the small octavo perfectly well. Now the thickness or substance of the paper employed to carry the weight is exactly the same as it was before, only it is differently arranged, that is to say, “gathered up.”35 If therefore a wall be gathered up like the Bristol board, it will bear greater weight than it would if it remained a wall veil. The sticks into which you gather it are called Piers. A pier is a coagulated wall.
§ II. Now you cannot quite treat the wall as you did the Bristol board, and twist it up at once; but let us see how you can treat it. Let A, Fig. IX., be the plan of a wall which you have made inconveniently and expensively thick, and which still appears to be slightly too weak for what it must carry: divide it, as at B, into equal spaces, a, b, a, b, &c. Cut out a thin slice of it at every a on each side, and put the slices you cut out on at every b on each side, and you will have the plan at B, with exactly the same quantity of bricks. But your wall is now so much concentrated, that, if it was only slightly too weak before, it will be stronger now than it need be; so you may spare some of your space as well as your bricks by cutting off the corners of the thicker parts, as suppose c, c, c, c, at C: and you have now a series of square piers connected by a wall veil, which, on less space and with less materials, will do the work of the wall at A perfectly well.
Fig. IX.
§ III. I do not say how much may be cut away in the corners c, c,—that is a mathematical question with which we need not trouble ourselves: all that we need