Математический календарь. 2019 год. Ирина Краева

Чтение книги онлайн.

Читать онлайн книгу Математический календарь. 2019 год - Ирина Краева страница 2

Математический календарь. 2019 год - Ирина Краева

Скачать книгу

числа (действительную и мнимуюя части)

      385 лет назад вышел первый том «Курса математики» Пьера Эригóна, в котором, в частности, был введён символ перпендикулярности «┴»

      285 лет со дня рождения английского математика Уэринга Эдуарда Вáринга (так называемая «проблема Варинга»2 в теории чисел особенно актуальна с точки зрения конструирования математического календаря)

      220 лет с момента первого доказательства основной теоремы алгебры немецким математиком Карлом Фридрихом Гáуссом

      205 лет со дня рождения французского математика Пьера Лорана Ванцéля (дал первое строгое доказательство невозможности решения двух знаменитых задач древности – об удвоении куба и трисекции угла – с помощью циркуля и линейки)

      145 лет с момента доказательства немецким математиком Георгом Кáнтором несчётности множества всех действительных чисел, и 135 лет с момента систематического изложения им принципов своего учения о бесконечности

      80 лет с момента попытки группы учёных под псевдонимом Никола Бурбакú представить различные математические теории с позиции аксиоматического метода; начало издания многотомного трактата «Элементы математики»

      75 лет с момента выхода книги «Теория игр и экономическое поведение», в которой американские математики Джон Нéйман и Оскар Моргенштéрн изложили новую математическую дисциплину о принятии решений в условиях конфликта или неопределённости

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Безусловно, этот список не является полным.

      2

      Любое целое число, не меньшее 1, может быть представлено в виде суммы некоторого числа слагаемых, каждое из которых есть одна и та же степень какого-то натурального числа; число слагаемых зависит только от степени.

/9j/4AAQSkZJRgABAQAAAQABAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiA

Скачать книгу


<p>2</p>

Любое целое число, не меньшее 1, может быть представлено в виде суммы некоторого числа слагаемых, каждое из которых есть одна и та же степень какого-то натурального числа; число слагаемых зависит только от степени.