ДНК. История генетической революции. Джеймс Уотсон

Чтение книги онлайн.

Читать онлайн книгу ДНК. История генетической революции - Джеймс Уотсон страница 41

ДНК. История генетической революции - Джеймс Уотсон New Science

Скачать книгу

разных плазмид, каждая из которых была устойчива к конкретному антибиотику. В одной плазмиде имелся ген (участок ДНК), обеспечивавший устойчивость к тетрациклину, а в другой – ген устойчивости к канамицину. (Как вы уже догадываетесь, исходно бактерии с первой плазмидой погибали от канамицина, а бактерии с второй плазмидой – от тетрациклина.) Предполагалось сконструировать единую «суперплазмиду», которая бы обеспечивала устойчивость к обоим антибиотикам.

      Сначала при помощи рестриктаз разрезали две неизмененные плазмиды. Затем эти плазмиды смешивались в одной пробирке, куда добавлялся фермент лигаза, которая должна была запустить склеивание обрезанных концевых остатков. Некоторые молекулы в пробирке под действием лигазы просто восстанавливали целостность – то есть склеивались два концевых остатка одной и той же плазмиды. Но иногда лигаза срабатывала так, что в разрезанную плазмиду попадали фрагменты ДНК другой плазмиды – так и получался желаемый гибрид. Когда эта задача была решена, требовалось внедрить все плазмиды в бактерии, и это успешно было проделано с использованием технологий Коэна. Полученные от рекомбинантов колонии выращивались на агаровых пластинах, покрытых одновременно тетрациклином и канамицином. Те плазмиды, которые просто восстановились свою структуру, по-прежнему обеспечивали устойчивость лишь к одному из двух антибиотиков, и, соответственно, бактерии с такими плазмидами не выживали в среде, содержащей два антибиотика. В такой среде могли выжить только бактерии с рекомбинантными плазмидами, сконструированными из двух имевшихся разновидностей ДНК, одна из которых кодировала устойчивость к тетрациклину, а другая – к канамицину.

      Герб Бойер и Стенли Коэн – первые в мире генные инженеры

      Следующий вызов сложившемуся в обществе укладу заключался в создании гибридной плазмиды с использованием ДНК не бактерий, а иного организма, например человека. В одном из первых успешных экспериментов ген африканских шпорцевых лягушек удалось добавить в плазмиду E. coli и трансплантировать ее в бактерию. Всякий раз при делении клеток в такой бактериальной колонии реплицировался лягушачий фрагмент ДНК. Если не применять сложную молекулярно-биологическую терминологию, а просто описать происходящее, то это выглядит как «клонирование ДНК лягушки»[5]. Как стало известно, ДНК млекопитающих также успешно клонируется. Ретроспективный анализ показал, что в этом нет ничего особенно удивительного: любой фрагмент ДНК – это, в конечном счете, просто ДНК, его химические свойства не изменяются в зависимости от источника. Вскоре стало понятно, что протоколы Коэна и Бойера, описывающие клонирование фрагментов ДНК, применимы к ДНК любого организма.

      Таким образом, разворачивался уже второй этап молекулярно-биологической революции. На первом этапе мы стремились описать статус и функционал ДНК в клетке, затем, после получения рекомбинантной ДНК

Скачать книгу


<p>5</p>

Термин «клонирование» означает создание множества идентичных образцов фрагмента ДНК, вставляемого в бактериальную клетку. Этим термином также именуется клонирование целых организмов, самый известный из которых – овечка Долли. В первом случае копируется лишь единственный участок ДНК, а во втором – целый геном.