Вселенная Стивена Хокинга (сборник). Стивен Хокинг

Чтение книги онлайн.

Читать онлайн книгу Вселенная Стивена Хокинга (сборник) - Стивен Хокинг страница 23

Вселенная Стивена Хокинга (сборник) - Стивен Хокинг Мир Стивена Хокинга

Скачать книгу

попадающих в каждую точку на экране. Но из-за интерференции число электронов в некоторых местах, наоборот, уменьшается. Если отправлять электроны через щели по одному, то естественно было бы ожидать, что каждый электрон пройдет через одну из щелей и распределение электронов за перегородкой будет таким же, как если бы мы имели дело с прохождением электрона через единственную щель – то есть равномерное распределение на экране. Но в реальности интерференционная картина наблюдается, даже если электроны выпускать по одному. Таким образом, каждый электрон должен проходить одновременно через обе щели!

      Явление интерференции между частицами играет ключевую роль в нашем понимании строения атомов – основных структурных элементов, лежащих в основе химии и биологии, и тех самых «кирпичиков», из которых состоим мы и всё вокруг нас. В начале ХХ века считалось, что атомы похожи на Солнечную систему, – в них электроны (отрицательно заряженные частицы) обращаются вокруг положительно заряженного ядра в центре. Считалось, что взаимное притяжение положительных и отрицательных электрических зарядов удерживает электроны на их орбитах, подобно тому как гравитационное притяжение между Солнцем и планетами удерживает планеты на их орбитах. Проблема состояла в том, что согласно доквантовым законам механики и законам электрического взаимодействия электроны должны были потерять свою энергию и, двигаясь по спирали, упасть на ядро. Это означало, что атомы, да и все вещество, должны были быстро сколлапсировать до сверхплотного состояния. В 1913 году датский ученый Нильс Бор предложил частичное решение этой проблемы. Он предположил, что орбиты электронов не могут находиться на произвольном расстоянии от центрального ядра, а только на вполне определенном. Если же допустить, что на каждом из этих расстояний могут находиться орбиты не более двух электронов, то это решает проблему «схлопывания» атома: заполнив орбиты с наименьшими энергиями и расстояниями от ядра, электроны просто не могут подойти к ядру ближе.

      Эта модель неплохо объясняла строение простейшего атома – атома водорода, в котором вокруг ядра обращается один-единственный электрон. Но было непонятно, как эту модель распространить на более сложные атомы. К тому же идея об ограниченном наборе допустимых орбит казалась очень уж произвольной. Новая теория квантовой механики справилась с этой трудностью. Эта теория показала, что обращающийся вокруг ядра электрон можно рассматривать как волну, длина которой зависит от его скорости. Длины некоторых орбит равны целому (а не дробному) числу длин волн электрона. У этих орбит после каждого оборота гребни оказываются на том же месте, и такие волны усиливаются. Эти орбиты соответствуют разрешенным орбитам Бора. А вот у орбит, длина которых не равна целому числу длин волн, каждый горб на каком-то обороте электрона окажется погашенным впадиной. Такие орбиты не являются допустимыми.

      Американский физик Ричард Фейнман предложил наглядный способ представить

Скачать книгу