Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид Самптер

Чтение книги онлайн.

Читать онлайн книгу Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер страница 11

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер Спорт. Лучший мировой опыт

Скачать книгу

возможной длиной железной дороги (сплошные линии).

      Решение посередине добавляет соединение в центр, разделяя область на четыре одинаковых треугольника. Длина каждой из двух пересекающихся линий может быть рассчитана с использованием теоремы Пифагора и равна √2. Общая длина равна √2 + √2 = 2,82 блока. Это решение похоже на расположение Хидегкути между полузащитой и форвардами или на то, как «Барселона» использует Месси. Добавление дополнительных точек дает треугольники, которые уменьшают общую длину соединительных линий.

      Если одна дополнительная точка соединения – это хорошо, то использование двух еще лучше. На рисунке 2.2 длина правой структуры составляет 1 + √3 = 2,73 блока[13] – это наименьшее из всех решений. И снова задействованы треугольники. Три ответвления выходят из точек соединения под углом 120°. Как это часто бывает в математике, самая красивая и наиболее сбалансированная форма является лучшим решением.

      Решение проблемы эффективного соединения четырех точек на квадрате было непростым (не могу сказать точно, сколько мэров справилось с этим). Но это задача для начинающих. Если хотите бросить себе настоящий вызов, попробуйте найти решение для пяти точек на углах пятиугольника. Ответом снова будут треугольники. Вопрос лишь в том, как их упорядочить. Если справитесь с пятью, попробуйте шесть точек в шестиугольнике. В последнем случае результатом станет совершенно новый тип решения, но он все еще включает в себя треугольники. Смотрите рисунок ниже.

      Ответ. Решение для пяти и шести точек.

      Давайте сделаем проблему соединения пригородов действительно сложной. Попробуем решить эту проблему, если мы не знаем расположения пригородов или даже сколько их необходимо подключить. С такой проблемой постоянно сталкивается слизевик под названием Physarum polycephalum. Слизевики не имеют мозга и состоят всего из одной клетки. Их «тело» представляет собой сеть взаимосвязанных трубок, которые качают питательные вещества назад и вперед. Слизевиков можно обнаружить на лесной подстилке или деревьях. Обычно они покрывают площадь меньше монеты, однако они могут сжиматься в неблагоприятных условиях и разрастаться, если еды вдоволь.

      Когда слизевики ищут еду, они решают проблему соединения пригородов. Вдохновленный этой идеей, мой японский коллега Тоси Накагаки решил проверить, смогут ли слизевики создать сеть метрополитена и скоростного трамвая Токио. Он и его коллеги разложили питание слизевиков в виде масштабной модели Большого Токио. Они положили овсяные хлопья в чашки Петри: одна большая посередине как отображение центра города и поменьше в местах, соответствующих Сибуе, Иокогаме, аэропорту в Тибе и другим близлежащим районам. Чтобы добиться соединения чашек с овсом, слизевики должны решить ту же проблему, которую разрешили японские градостроители при проектировании транспортной системы Токио. Могут ли слизевики формировать эффективные связи между своими продовольственными ресурсами?

      Эксперименты прошли

Скачать книгу


<p>13</p>

Длина каждой из четырех ветвей, соединенных с пригородами, равна  Применяя теорему Пифагора, средняя длина тогда . Общая сумма равна .