Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид Самптер

Чтение книги онлайн.

Читать онлайн книгу Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер страница 25

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер Спорт. Лучший мировой опыт

Скачать книгу

align="center">

      6

      Всестороннюю историю работы Борткевича можно найти на сайте statprob.com/encyclopedia/LadislausVonBortkiewicz.html. Его книга о законах малых чисел доступна в оригинале на сайте archive.org/details/dasgesetzderklei00bortrich.

      7

      Некоторые из этих примеров перечислены более подробно в Letkowski, J. 2012. Applications of the Poisson probability distribution.

      8

      Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. – Science 347(6217), 2015. – p. 78–81.

      9

      В этой модели я использую четыре параметра для каждой команды: среднее число забитых голов дома (SH), пропущенных дома(CH), забитых(SA) и пропущенных(CA) на выезде. Они оцениваются по голам, забитым в сезоне-2012/13. Когда две команды встречаются в лиге в моем моделированном сезоне-2013/14, я сначала генерирую цели для хозяев. Они распределены по Пуассону со средним значением, равным 1/2 (SH + CA), которое учитывает атакующую силу хозяев и оборону гостей. Голы гостей распределены по Пуассону со средним значением, равным 1/2 (CH + SA). Чтобы получить полный сезон, процедура повторяется для всех матчей.

      10

      ТВ-программа о футболе. Выходит каждую субботу на BBC.

      11

      Для соединения всех 11 игроков требуется не менее 10 связей между игроками. Сеть, соединяющая всех игроков вместе, используя ровно 10 ссылок, называется остовным деревом. Чтобы построить показанную сеть, я сначала нахожу остовное дерево с наименьшей общей длиной – минимальное остовное дерево. На втором этапе я вычисляю новое минимальное остовное дерево, которое не содержит ссылок от первого остовного дерева. Показанная сеть объединяет эти деревья.

      12

      Используемые здесь позиции адаптированы из книги Джонатана Уилсона «Переворачивая пирамиду: История футбольной тактики» (Orion Books, Лондон, 2008). Книга охватывает эти и многие другие формации, используемые в истории футбола.

      13

      Длина каждой из четырех ветвей, соединенных с пригородами, равна

 Применяя теорему Пифагора, средняя длина тогда
. Общая сумма равна
.

      14

      Tero, A. Rules for biologically inspired adaptive network design. – Science 327(5964), 2010. – p. 439–442.

      15

      Зоны, которые я вычисляю здесь, как я объясню ниже в основном тексте, представляют собой наборы точек, наиболее близкие к каждому игроку. Таким образом, все точки в игровых зонах – это те, которые ближе к этому игроку, и никакому другому. Это разбиение известно как диаграмма Вороного, в честь украинского математика Георгия Вороного.

      16

      Для вычисления триангуляции сначала используем диаграмму Вороного для расчета зон. Затем мы берем центральные точки всех зон диаграммы Вороного (то есть игроков) и рисуем связи между ними, если они имеют соседние зоны, чтобы создать триангуляцию Делоне. Для сети «Барселоны» первое и второе минимальное остовное дерево содержат большинство краев триангуляции Делоне. Триангуляции Делоне имеют тенденцию максимизировать углы в соединительных сетях, а диаграмма Вороного максимизирует размеры зон. Мы можем переключать взаимозаменяемость между двумя: каждая диаграмма

Скачать книгу