Жизнь на скорости света. От двойной спирали к рождению цифровой биологии. Крейг Вентер
Чтение книги онлайн.
Читать онлайн книгу Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - Крейг Вентер страница 17
Кроме того, Гарри Ф. Ноллер из Калифорнийского университета в Санта-Крусе (начинавший свое исследование, будучи очарован тем, как двигаются молекулы) в 1999 году опубликовал первые подробные изображения целой рибосомы, а потом, в 2001-м, дополнил их еще более тонкими деталями. Его работа показала, как формируются и распадаются молекулярные мостики во время этой операции{67}. Рибосомная машина содержит пружины сжатия и кручения, сделанные из РНК, чтобы держать субъединицы вместе, когда они смещаются и проворачиваются относительно друг друга. Ее малая субъединица, двигаясь вдоль матричной РНК, связывается с транспортной РНК, у которой на одном конце свободный антикодон, а на другом – аминокислота. Аминокислоты связываются вместе в белок большой субъединицей, которая тоже связывается с транспортной РНК. Таким образом рибосома может пропускать через свой центр по 15 груженных аминокислотами молекул РНК в секунду, координируя присоединение новых звеньев к растущему белку.
На нарушении этих функций бактериальных рибосом основано действие многих антибиотиков. К счастью, хотя бактериальные и человеческие рибосомы похожи, они достаточно различаются, чтобы антибиотики могли связаться с бактериальными рибосомами и блокировать их эффективнее, чем человеческие. Все аминогликозиды – тетрациклин, хлорамфеникол, эритромицин – работают, убивая бактериальные клетки вмешательством в работу рибосом.
Йонат, Рамакришнан и Томас А. Стейтц поделили Нобелевскую премию 2009 года по химии за свои опыты по выяснению, как работает эта чудесная машина.
По мере развития геномики роль РНК выглядела все более важной. Согласно центральной догме, РНК – всего лишь посредник, обеспечивающий выполнение команд, зашифрованных в ДНК. В этой модели двойная спираль ДНК расплетается, и ее генетическая информация копируется на одноцепочечную мРНК. В свою очередь мРНК переносит ее от генома к рибосомам. Общепринятым также было мнение, что ДНК, не кодирующая белки, – это «мусорная» ДНК. Оба представления изменились в 1998 году, когда Эндрю Файр из Института Карнеги в Вашингтоне, Крейг Кэмерон Мелло из Массачусетского университета и их коллеги опубликовали свидетельства того, что двухцепочечная РНК, снятая с некодирующей ДНК, может быть использована, чтобы отключать определенные гены, – что помогло объяснить некоторые озадачивающие явления, наблюдающиеся, например, у петуний
67
http://library.cshl.edu/oralhistory/interview/cshl/memories/harry-noller-and-ribosome/