Убийственные большие данные. Как математика превратилась в оружие массового поражения. Кэти О'Нил

Чтение книги онлайн.

Читать онлайн книгу Убийственные большие данные. Как математика превратилась в оружие массового поражения - Кэти О'Нил страница 6

Убийственные большие данные. Как математика превратилась в оружие массового поражения - Кэти О'Нил Цифровая экономика и цифровое будущее

Скачать книгу

style="font-size:15px;">      Другими словами, Бодро мыслил как специалист по анализу данных. Он проанализировал предварительные данные, по большей части на основе наблюдений: обычно Тед Уильямс делал подачу в правый аутфилд. Затем он предпринял меры – и они сработали. Игроки стали ловить больше мощных лайнеров Уильямса (хотя они по-прежнему ничего не могли сделать с хоум-ранами, пролетающими над их головами).

      Если вы сегодня придете на бейсбольную игру высшей лиги, вы увидите, что защита относится практически к каждому игроку противника как к Теду Уильямсу. Если Бодро просто пронаблюдал за тем, куда Уильямс обычно направлял удар, то сейчас менеджеры точно знают, куда каждый игрок направлял удар в течение последней недели, за последний месяц, за всю карьеру, играя против левшей, в ситуации, когда у него было два страйка, и так далее и тому подобное. Используя эту собранную информацию, они могут проанализировать текущую ситуацию и рассчитать расстановку игроков, дающую наибольшую вероятность успеха. Иногда это включает в себя довольно-таки существенные перемещения игроков по полю.

      Перенос защиты – лишь часть гораздо более серьезного вопроса: какие шаги могут предпринять бейсбольные команды для максимизации вероятности победы? В поисках ответа на этот вопрос специалисты по бейсбольной статистике изучили каждую переменную, которую смогли количественно измерить, и присвоили ей определенную ценность. Насколько дабл ценнее сингла? Когда, если вообще когда-либо, имеет смысл использовать сэкрифайс-бант для перемещения раннера с первой на вторую базу?

      Ответы на все эти вопросы смешаны и объединены в математические модели этого спорта. В мире бейсбола существуют параллельные вселенные, и каждая из них представляет собой сложное вероятностное полотно. Они включат в себя каждое измеримое отношение между каждым спортивным компонентом, от уоков и хоум-ранов и до самих игроков. Цель модели – просчитать разные сценарии на каждой развилке и найти оптимальные комбинации. Если Yankees поставят питчера-правшу против сильного отбивающего Майка Траута из Angels, в сравнении с их текущим питчером – кто с большой вероятностью его выбьет? И как это повлияет на общую вероятность победы?

      Бейсбол – идеальная база для предиктивного математического моделирования. Как писал Майкл Льюис в своем бестселлере Moneyball (2003)[1], этот спорт привлекал самых увлеченных аналитиков данных на протяжении всей его истории. В прошлом фанаты изучали статистику по оборотным сторонам бейсбольных карточек, анализируя закономерности хоум-ранов Карла Ястржемски или сравнивая общее количество страйк-аутов Роджера Клеменса и Дуайта Гудена. Но начиная с 1980-х годов за дело взялись серьезные специалисты по статистике – они начали разбираться, что же, собственно, означают все эти цифры вместе с огромным количеством новых данных: как именно они конвертируются в победы и как руководство команды может достичь максимального успеха при минимальных вложениях.

      Сегодня термин moneyball («денежный

Скачать книгу


<p>1</p>

Moneyball. Как математика изменила самую популярную спортивную лигу в мире / пер. Натальи Воронцовой. М.: Манн, Иванов и Фербер, 2013.