Мир множества миров. Физики в поисках иных вселенных. Александр Виленкин
Чтение книги онлайн.
Читать онлайн книгу Мир множества миров. Физики в поисках иных вселенных - Александр Виленкин страница 13
Рис. 4.1. Простейшие атомные ядра. Протоны и нейтроны обозначаются соответственно p и n.
Современный анализ, опирающийся на самые последние данные о ядерных реакциях и суперкомпьютерные модели, дает точные значения распространенности элементов после того, как они покинули космическое горнило. То, насколько хорошо результаты этих вычислений согласуются с астрономическими наблюдениями, весьма впечатляет. Астрономы могут определять химический состав далеких объектов, изучая спектр испущенного ими света. Теория горячего Большого взрыва твердо предсказывает, что ни одна галактика во Вселенной не должна содержать меньше двадцати трех процентов гелия: поскольку он производится в звездах, его первоначальная распространенность может только возрастать. И действительно, ни одной такой галактики до сих пор не обнаружено. Предсказанная распространенность дейтерия – чуть меньше одной десятитысячной, лития – менее одной миллиардной. Весьма примечательно, что столь сильно различающиеся значения подтверждаются наблюдениями. Можно было бы сказать, что 23 % гелия – это просто счастливая догадка, но вероятность случайного совпадения целого набора чисел крайне низка.
Но как обстоят дела с тяжелыми элементами? Несмотря на все усилия, Гамов и его команда не смогли найти мост через пятинуклонный провал. Тем временем по другую сторону Атлантики главный защитник модели стационарного состояния Фред Хойл разрабатывал альтернативную теорию происхождения элементов. Он знал, что звезды, которые подобно нашему Солнцу пережигают водород в гелий, недостаточно горячи для этой задачи. Но что происходит, когда звезда исчерпывает свой водород? Тогда она больше не может противостоять собственной гравитации, ядро звезды начинает сжиматься, а его плотность и температура возрастают. После того как в центре температура достигает 100 миллионов градусов, открывается новый канал ядерных реакций: три ядра гелия сливаются и образуют ядро углерода. Когда весь гелий в центральной области израсходован, звезда сжимается дальше, пока температура не поднимется настолько, чтобы запустить реакции ядерного горения углерода. По мере развития этого процесса образуется слоистая структура, в которой более тяжелые элементы находятся ближе к центру (поскольку для их приготовления требуются более высокие температуры). В звездах, подобных Солнцу, этот процесс не заходит слишком далеко, но в более массивных светилах он проделывает весь путь вплоть до образования железа. За этой точкой топлива для ядерного горения не остается. Не поддерживаемая больше ядерными реакциями внутренняя часть ядра звезды коллапсирует, достигая невероятной плотности и температуры около 10 миллиардов градусов. Это приводит к гигантскому взрыву, называемому вспышкой сверхновой, при котором все внешние слои, содержащие наработанные элементы, выбрасываются в межзвездное пространство. Элементы тяжелее железа образуются во время коллапса и взрыва ядра. Обогащенный