Algorithms to Live By: The Computer Science of Human Decisions. Brian Christian
Чтение книги онлайн.
Читать онлайн книгу Algorithms to Live By: The Computer Science of Human Decisions - Brian Christian страница 7
![Algorithms to Live By: The Computer Science of Human Decisions - Brian Christian Algorithms to Live By: The Computer Science of Human Decisions - Brian Christian](/cover_pre337173.jpg)
Here we’ll analyze one of the simplest cases: where we know for certain the price range in which offers will come, and where all offers within that range are equally likely. If we don’t have to worry about the offers (or our savings) running out, then we can think purely in terms of what we can expect to gain or lose by waiting for a better deal. If we decline the current offer, will the chance of a better one, multiplied by how much better we expect it to be, more than compensate for the cost of the wait? As it turns out, the math here is quite clean, giving us an explicit function for stopping price as a function of the cost of waiting for an offer.
This particular mathematical result doesn’t care whether you’re selling a mansion worth millions or a ramshackle shed. The only thing it cares about is the difference between the highest and lowest offers you’re likely to receive. By plugging in some concrete figures, we can see how this algorithm offers us a considerable amount of explicit guidance. For instance, let’s say the range of offers we’re expecting runs from $400,000 to $500,000. First, if the cost of waiting is trivial, we’re able to be almost infinitely choosy. If the cost of getting another offer is only a dollar, we’ll maximize our earnings by waiting for someone willing to offer us $499,552.79 and not a dime less. If waiting costs $2,000 an offer, we should hold out for an even $480,000. In a slow market where waiting costs $10,000 an offer, we should take anything over $455,279. Finally, if waiting costs half or more of our expected range of offers—in this case, $50,000—then there’s no advantage whatsoever to holding out; we’ll do best by taking the very first offer that comes along and calling it done. Beggars can’t be choosers.
Optimal stopping thresholds in the house-selling problem.
The critical thing to note in this problem is that our threshold depends only on the cost of search. Since the chances of the next offer being a good one—and the cost of finding out—never change, our stopping price has no reason to ever get lower as the search goes on, regardless of our luck. We set it once, before we even begin, and then we quite simply hold fast.
The University of Wisconsin–Madison’s Laura Albert McLay, an optimization expert, recalls turning to her knowledge of optimal stopping problems when it came time to sell her own house. “The first offer we got was great,” she explains, “but it had this huge cost because they wanted us to move out a month before we were ready. There was another competitive offer … [but] we just kind of held out until we got the right one.” For many sellers, turning down a good offer or two can be a nerve-racking proposition, especially if the ones that immediately follow are no better. But McLay held her ground and stayed cool. “That would have been really, really hard,” she admits, “if I didn’t know the math was on my side.”
This principle applies to any situation where you get a series of offers and pay a cost to seek or wait for the next. As a consequence, it’s relevant to cases that go far beyond selling a house. For example, economists have used this algorithm to model how people look for jobs, where it handily explains the otherwise seemingly paradoxical fact of unemployed workers and unfilled vacancies existing at the same time.
In fact, these variations on the optimal stopping problem have another, even more surprising property. As we saw, the ability to “recall” a past opportunity was vital in Kepler’s quest for love. But in house selling and job hunting, even if it’s possible to reconsider an earlier offer, and even if that offer is guaranteed to still be on the table, you should nonetheless never do so. If it wasn’t above your threshold then, it won’t be above your threshold now. What you’ve paid to keep searching is a sunk cost. Don’t compromise, don’t second-guess. And don’t look back.
When to Park
I find that the three major administrative problems on a campus are sex for the students, athletics for the alumni, and parking for the faculty.
—CLARK KERR, PRESIDENT OF UC BERKELEY, 1958–1967
Another domain where optimal stopping problems abound—and where looking back is also generally ill-advised—is the car. Motorists feature in some of the earliest literature on the secretary problem, and the framework of constant forward motion makes almost every car-trip decision into a stopping problem: the search for a restaurant; the search for a bathroom; and, most acutely for urban drivers, the search for a parking space. Who better to talk to about the ins and outs of parking than the man described by the Los Angeles Times as “the parking rock star,” UCLA Distinguished Professor of Urban Planning Donald Shoup? We drove down from Northern California to visit him, reassuring Shoup that we’d be leaving plenty of time for unexpected traffic. “As for planning on ‘unexpected traffic,’ I think you should plan on expected traffic,” he replied. Shoup is perhaps best known for his book The High Cost of Free Parking, and he has done much to advance the discussion and understanding of what really happens when someone drives to their destination.
We should pity the poor driver. The ideal parking space, as Shoup models it, is one that optimizes a precise balance between the “sticker price” of the space, the time and inconvenience of walking, the time taken seeking the space (which varies wildly with destination, time of day, etc.), and the gas burned in doing so. The equation changes with the number of passengers in the car, who can split the monetary cost of a space but not the search time or the walk. At the same time, the driver needs to consider that the area with the most parking supply may also be the area with the most demand; parking has a game-theoretic component, as you try to outsmart the other drivers on the road while they in turn are trying to outsmart you.* That said, many of the challenges of parking boil down to a single number: the occupancy rate. This is the proportion of all parking spots that are currently occupied. If the occupancy rate is low, it’s easy to find a good parking spot. If it’s high, finding anywhere at all to park is a challenge.
Shoup argues that many of the headaches of parking are consequences of cities adopting policies that result in extremely high occupancy rates. If the cost of parking in a particular location is too low (or—horrors!—nothing at all), then there is a high incentive to park there, rather than to park a little farther away and walk. So everybody tries to park there, but most of them find the spaces are already full, and people end up wasting time and burning fossil fuel as they cruise for a spot.
Shoup’s solution involves installing digital parking meters that are capable of adaptive prices that rise with demand. (This has now been implemented in downtown San Francisco.) The prices are set with a target occupancy rate in mind, and Shoup argues that this rate should be somewhere around 85%—a radical drop from the nearly 100%-packed curbs of most major cities. As he notes, when occupancy goes from 90% to 95%, it accommodates only 5% more cars but doubles the length of everyone’s search.
The key impact that occupancy rate has on parking strategy becomes clear once we recognize that parking is an optimal stopping problem. As you drive along the street, every time you see the occasional empty spot you have to make a decision: should you take this spot, or go a little closer to your destination and try your luck?
Assume you’re on an infinitely long road, with parking spots evenly spaced, and your goal is to minimize the distance you end up walking to your destination. Then the solution is the Look-Then-Leap Rule. The optimally