Wheat Belly Total Health: The effortless grain-free health and weight-loss plan. Dr Davis William
Чтение книги онлайн.
Читать онлайн книгу Wheat Belly Total Health: The effortless grain-free health and weight-loss plan - Dr Davis William страница 5
Over the years, there have been many efforts to genetically modify wheat, such as by using gene-splicing technology to insert or delete a gene. However, public resistance has dampened efforts to bring genetically modified (GM) wheat to market, so no wheat currently sold is, in the terminology of genetics, ‘genetically modified’. (There have been recent industry rumblings, however, that make the prospect of true GM wheat a probable reality in the near future.) All of the changes introduced into modern wheat are the results of methods that pre-date the technology to create GM foods. This does not mean that the methods used to change wheat were benign; in fact, the crude and imprecise methods used to change wheat, such as chemical mutagenesis, have the potential to be worse than genetic modification, yielding a greater number of unanticipated changes in genetic code than the handful introduced through gene-splicing.4
Corn and rice, on the other hand, have been genetically modified, in addition to undergoing other changes. For instance, scientists introduced genes to make corn resistant to the herbicide glyphosate and to express Bacillus thurigiensis (Bt), a toxin that kills insects, while rice has been genetically modified to make it resistant to the herbicide glufosinate and to express beta-carotene (a variety called Golden Rice). Problem: while, in theory, the notion of just inserting one silly gene seems simple and straightforward, it is anything but. The methods of gene insertion remain crude. The site of insertion – which chromosome, within or alongside other genes, within or without various control elements – not to mention disruption of epigenetic effects that control gene expression, cannot be controlled with current technology. And it’s misleading to say that only one gene is inserted, as the methods used usually require several genes to be inserted. (We discuss the nature of specific changes in GM grains in Chapter 2.)
The wheat, corn and rice that make up 50 per cent of the human diet in the 21st century are not the wheat, corn and rice of the 20th century. They’re not the wheat, corn and rice of the Middle Ages, nor of the Bible, nor of the Egyptian empire. And they are definitely not the same wheat, corn and rice that were harvested by those early hungry humans. They are what I call ‘Frankengrains’: hybridized, mutated, genetically modified to suit the desires of agribusiness, and now available at a supermarket, convenience store or school near you.
Wheat: What Changed . . . and Why Are the Changes So Bad?
All strains of wheat, including traditional strains like spelt and emmer, are problems for nonruminant humans who consume them. But modern wheat is the worst.
Modern wheat looks different: shorter, thicker shaft, larger seeds. The reduction in height is due to mutations in Rh (reduced height) genes that code for the protein gibberellin, which controls stalk length. This one mutant gene is accompanied by other mutations. Changes in Rh genes are thereby accompanied by other changes in the genetic code of the wheat plant.5 There’s more here than meets the eye.
Gliadin
While gluten is often fingered as the source of wheat’s problems, it’s really gliadin, a protein within gluten, that is the culprit behind many destructive health effects of modern wheat. There are more than 200 forms of gliadin proteins, all incompletely digestible.6 One important change that has emerged over the past 50 years, for example, is increased expression of a gene called Glia9, which yields a gliadin protein that is the most potent trigger for coeliac disease. While the Glia-9 gene was absent from most strains of wheat from the early 20th century, it is now present in nearly all modern varieties,7 probably accounting for the 400 per cent increase in coeliac disease witnessed since 1948.8
New gliadin variants are partially digested into small peptides that enter the bloodstream and then bind to opiate receptors in the human brain – the same receptors activated by heroin and morphine.9 Researchers call these peptides ‘exorphins’, or exogenous morphine-like compounds. Gliadin-derived peptides, however, generate no ‘high’, but they do trigger increased appetite and increased calorie consumption, with studies demonstrating consistent increases of 400 calories per day, mostly from carbohydrates.
Gluten
Gluten (gliadin + glutenins) is the stuff that confers the stretchiness unique to wheat dough. Gluten is a popular additive in processed foods such as sauces, instant soups and frozen foods, which means the average person ingests between 15 and 20 grams (g) per day.10 Gluten has been genetically manipulated to improve the baking characteristics of its glutenin. Geneticists have therefore crossbred wheat strains repeatedly, bred wheat with nonwheat grasses to introduce new genes, and used chemicals and radiation to induce mutations. Breeding methods used to alter gluten quality do not result in predictable changes. Hybridizing two different wheat plants yields as many as 14 unique glutenin proteins never before encountered by humans.11
Wheat Germ Agglutinin
The genetic changes inflicted on wheat have altered the structure of wheat germ agglutinin (WGA), a protein in wheat that provides protection against moulds and insects. The structure of WGA in modern wheat, for instance, differs from that of ancient wheat strains.12 WGA is indigestible and toxic, resistant to any breakdown in the human body, and unchanged by cooking, baking and sourdough fermentation. Unlike gluten and gliadin, which require genetic susceptibility to exert some of their negative effects, WGA does its damage directly. WGA alone is sufficient to generate coeliac disease-like intestinal damage by disrupting microvilli, the absorptive ‘hairs’ of intestinal cells.13
Phytates
Phytic acid (phytates) is a storage form of phosphorus in whin-breeding efforts over the past 50 years have eat and other grains. Because phytates also provide resistance to pests, graselected strains with increased phytate content. Modern wheat, maize and millet, for instance, each contain 800 milligrams (mg) of phytates per 100 g (31⁄2 ounces) of flour. Phytate content increases with fibre content, so advice to increase fibre in your diet by consuming more ‘healthy whole grains’ also increases the phytate content of your diet. As little as 50 mg of phytates can turn off absorption of minerals, especially iron and zinc.14 Children who consume grains ingest 600 to 1,900 mg of phytates per day, while enthusiastic grain-consuming cultures, such as modern Mexicans, ingest 4,000 to 5,000 mg of phytates per day. These levels are associated with nutrient deficiencies.15
Alpha-Amylase Inhibitors and Other Allergens
Wheat allergies are becoming more prevalent. Numerous allergens have been identified in modern wheat that are not present in ancient or traditional forms of the plant.16 The most common are alpha-amylase inhibitors, which are responsible for causing hives, asthma, cramps, diarrhoea and eczema. Compared with older strains, the structure of modern alpha-amylase inhibitors differs by 10 per cent, meaning it may have as many as several dozen amino acid differences. As any allergist will tell you, just a few amino acids can spell the difference