Virolution. Frank Ryan

Чтение книги онлайн.

Читать онлайн книгу Virolution - Frank Ryan страница 10

Virolution - Frank  Ryan

Скачать книгу

objections to such manipulations of the human embryo, but for governments and the groups who monitor the ethics of medicine, the advantages to families will usually outweigh the ethical worries. It is also important to grasp that pre-implantation genetic diagnosis, with selection for healthy embryos, not only removes the risk of serious disease in an affected offspring but in some cases also eliminates the risk to future generations of the family.

      A key development over the last decade or so has been our increasing understanding of the role of mutation in cancer.

      But before we enter this intriguing, and disturbing, domain, we should spend a minute or two addressing some key questions as to the essential nature of what we are dealing with. What is cancer? Where does it come from? And why does it frighten us so much?

      Cancer is a term used for diseases in which our own body’s cells divide without control and are able to invade other tissues. To put it another way, cells that have been programmed to work in perfect harmony with all the other cells, tissues and organs of the body, go ape and declare violent independence. What is at stake, for the aberrant cells, is immortality. Indeed, cancer cells are immortal in cell culture – but such ambitions are disastrous for the tissue, organ, and individual in which such ambitions arise, since it means that they invade the local tissue, or organ, and from there invade the local environment, or bloodstream, where they cause havoc, and possibly the death of the individual.

      There are more than a hundred different forms of cancer, often named after the organ where they occur, such as the colon or breast, or after the kind of body cells they arise from, such as “carcinoma”, which arises from skin, or the cells lining internal organs, “sarcoma”, which arise from internal tissues, such as bone or muscle, “leukaemias”, which arise from blood-forming cells, and “lymphomas” and “myelomas”, which arise from cells involved in the immune system. In the words of Professor Karol Sikora, former chief of the WHO cancer programme, ‘Cancer is frightening because it is the enemy within.’4 It is also frightening because it is common. One in three of us in developed countries will develop cancer at some point in our lives. In 2008, in the USA alone, some 1,437,180 people were newly diagnosed with cancer, and that same year, in the UK, 1.2 million people were living with the disease from day to day. One of the ironies is that with improvements in healthcare as a result of modern treatments, the numbers of people living with the disease are likely to rise, with Sikora estimating a rise to 3 million in the UK by the year 2020. Indeed, it seems that never a day goes by without a cancer story in the news, with sufferers or their loved ones describing their experiences, and tribulations, on television, in newspaper and magazine articles, or on the personal pages on the Internet. Indeed, if we Google for cancer we discover approximately 300 million websites worldwide. Even the medical term for it and the defining words are hardly reassuring: “a malignant neoplasm”, a disease in which the body’s own cells display “uncontrolled growth”, followed by “metastasis”, which means the invasion of other organs of the body.

      We all know that cancer is one of the common diseases and a significant cause of death in any country. We also know that cancer tends to get commoner with increasing age. Many of us probably also know that the term “cancer” is derived from the Latin word for a crab, which would appear to imply that it is a creeping thing that, like the splay of the crab’s many legs, spreads and invades our tissues. In fact, let me assure readers that many cancers are eminently treatable, far more so than when I first qualified as a doctor, and some are even completely curable. As with anything that frightens us, it becomes a good deal less frightening when we come to understand it better. And there can be no doubt at all that the logical approach to cancer, and its treatment, comes from exactly that – from understanding.

      Our body is composed of organs and tissues, such as the brain, heart, and the glandular tissues that line the breast, or the prostate, and these in turn are made up of many different types of cells. As part of the wear and tear of life, cells die and must be replaced by the division of neighbouring cells. The first step in understanding cancers is to grasp the fact that nearly all cancers are caused by disturbance in the way genes, and other regulatory factors, exert control over this pattern of reproduction of cells.

      Two groups of genes appear to be particularly important in controlling the way cells reproduce themselves. One group, known as “oncogenes” (onco here means tumour), are so-called because if they are inappropriately activated they increase the risk of developing a cancer. A second group are known as “tumour suppressor genes”. As the name suggests, these normally suppress the tendency towards uncontrolled cell proliferation that is such a prominent feature of cancers. Mutations that inappropriately switch on oncogenes or inappropriately switch off tumour suppressor genes are thus a potent cause of cancer. The decoding of the human genome has highlighted the genetic alterations that underlie cancers in such unprecedented detail that it has led two American oncologists, Vogelstein and Kinzler, to declare that ‘cancer is, in essence, a genetic disease’.5 They have summarised the mutated genes responsible for various cancers, together with the ways in which these mutations have perverted the normal genetic mechanisms to do so. For example, one in five familial breast cancers have been linked to mutations in the genes BRCA1 and BRCA2. Geneticists can further predict that women who carry these mutations have an 80% risk of developing breast cancer during their lifetime, so that pre-emptive surgery offers the potential of prevention. Recently, PGD has also been extended to help such families, and embryological screening has been made increasingly available for BRCA1 and BRCA2, with the first assisted babies, freed from the terrible risk, already born in a number of countries.

      In 2006, a multi-centre screening programme in the USA looked at more than 13,000 genes taken from human breast and colon cancer cells, enabling authorities to compare the genes they found in the two cancers with the normal, and revealing that individual tumours accumulate an average of 90 mutant genes.6 Meanwhile, they concluded that a much smaller number of mutations are critical to the early stages of the cancer process, in their estimation perhaps 11 mutations for each of breast and colon cancer. Encouraged by these findings, the US National Institutes of Health is drawing up an atlas of cancer genomes – the Cancer Genome Atlas, or TCGA – with the aim of decoding the genomes of every human cancer and, by comparing these to the normal, extrapolating the genetic abnormalities that underlie all cancers.7 A pilot study has begun with cancers of the lung, brain and ovary.

      It is not unreasonable to anticipate, as our knowledge of mutation grows, that important preventive and therapeutic aspects will come from it. However, though the understanding and medical applications of mutation have proved to be helpful, mutation is neither the exclusive mechanism of hereditary change in evolution nor the exclusive explanation of the genetic underpinning of disease, including cancer.

       The Genetic Web of Life 1

      Sit down before fact as a little child, be prepared to give up every preconceived notion, follow humbly wherever and to whatever abysses nature leads, or you shall learn nothing.

      THOMAS HENRY HUXLEY2

      When, on a hot afternoon in September 1994, I arrived at the Rockefeller University, New York, with an appointment to interview its distinguished president, and Nobel Laureate, Joshua Lederberg, I considered myself fortunate that he had agreed to see me, since he was one of the busiest men I was ever likely to meet. The meeting with Terry Yates, two months earlier, had radically altered my perspective on viruses, and, on my return to England, I had consumed what literature I could lay my hands on concerning what for me was a new topic of inspiration – the possibility that what we were observing in pandemic plagues, including AIDS, might best be interpreted as evolutionary phenomena. I had arrived early so

Скачать книгу