Квантовая магия. С. И. Доронин
Чтение книги онлайн.
Читать онлайн книгу Квантовая магия - С. И. Доронин страница 4
Идеи Фейнмана были интересны, но в те годы они не вызвали особого резонанса в научной среде. Ситуация коренным образом изменилась в 1994 году, когда Питер Шор[5] показал, что квантовый алгоритм способен свести задачу факторизации (разложения целого числа на простые множители) к полиномиальному классу сложности, в то время как обычный алгоритм экспоненциально зависит от входных данных.
Например, обычному компьютеру, выполняющему 1010 операций в секунду, потребуется около года, чтобы разложить на простые множители число из 34 цифр, а время, необходимое для разложения числа из 60 цифр, уже превысит возраст Вселенной (1017 с). Используя же квантовый алгоритм, эту задачу можно решить достаточно быстро.
Результат, полученный П. Шором, с практической точки зрения означает, что квантовый компьютер способен за реальное время «взломать» шифры, используемые, например, в банковской сфере. Там как раз широко применяется криптосистема, основанная на невозможности разложения достаточно большого числа на простые множители за приемлемое для обычных компьютеров время. Осознав ситуацию и на наглядном примере убедившись в возможностях квантового компьютера, финансовый мир, частные фирмы и государственные учреждения многих стран мира направили огромные средства на научные исследования в области квантовых вычислений. В эту же сферу устремились и многие научные коллективы, срочно переориентировав свою тематику. Квантовым вычислениям стало посвящаться наибольшее количество научных публикаций по сравнению с другими разделами физики. В отдельные годы число напечатанных в реферируемых журналах статей на эту тему превышало количество публикаций на все другие темы из области физики вместе взятые. Все это способствовало тому, что достаточно быстро были созданы реальные прототипы квантового компьютера, а теоретические основы, необходимые для его создания, получили очень мощный импульс к развитию. Прежде всего это касается теории запутанных состояний, теории декогеренции
5