Эволюция физики. Леопольд Инфельд
Чтение книги онлайн.
Читать онлайн книгу Эволюция физики - Леопольд Инфельд страница 7
Путь, который привел к обобщению руководящей идеи Галилея, длинен и извилист. Мы не можем показать здесь, какими изобильными и плодотворными оказались последствия этого обобщения. Его применение приводит к простому и удобному объяснению многих фактов, до того времени несогласованных и непонятных.
Из всего разнообразия движений мы возьмем лишь самое простое и применим к его объяснению только что сформулированные законы.
Рис. 13.
Пуля, выпущенная из ружья, камень, брошенный под углом к горизонту, струя воды, выходящая из трубы, – все они описывают хорошо известную траекторию одного и того же типа – параболу. Вообразим себе, например, что к камню присоединен спидометр, так что вектор скорости камня может быть определен для любого момента.
Рис. 14.
Результат представлен на рисунке 13. Направление действующей на камень силы совершенно такое же, как и направление изменения скорости; мы уже видели, как его можно определить. Следующий рисунок показывает, что сила вертикальна и направлена вниз. Совершенно то же самое мы видим, рассматривая движение камня, брошенного с вершины башни. Пути, а также и скорости совершенно различны, но изменения скоростей имеют одинаковое направление – к центру Земли.
Рис. 15.
Камень, привязанный к веревке и вращающийся в горизонтальной плоскости, движется по окружности. Все векторы на диаграмме, представляющей это движение, имеют одинаковую длину, если величина скорости постоянна (рис. 15). Тем не менее вектор скорости непрерывно меняется, так как траектория не прямолинейна. Только в равномерном прямолинейном движении не участвуют никакие силы. Здесь же сила налицо, и скорость изменяется, но не по величине, а по направлению. Согласно закону движения должна существовать некоторая сила, вызывающая это изменение; в данном случае сила действует между камнем и рукой, держащей веревку.
Сразу же возникают дальнейшие вопросы: в каком направлении действует сила? Опять векторная диаграмма дает ответ. На рисунке 16 даны векторы скоростей для двух очень близких точек и найдено ускорение. Видно, что этот последний вектор должен быть направлен вдоль веревки к центру окружности и всегда перпендикулярен к вектору