This Long Pursuit: Reflections of a Romantic Biographer. Richard Holmes

Чтение книги онлайн.

Читать онлайн книгу This Long Pursuit: Reflections of a Romantic Biographer - Richard Holmes страница 6

This Long Pursuit: Reflections of a Romantic Biographer - Richard  Holmes

Скачать книгу

Voltaire attended Newton’s state funeral at Westminster Abbey in 1727, the apple story was already current, and he retold it enthusiastically in his Letters on the English Nation in 1734: ‘Having retired in 1666 to the countryside near Cambridge, he was walking one day in his garden when he noticed the fruit falling from a tree, and slipped into a profound meditation on the concept of weight, the exact cause of which all natural philosophers had sought for so long in vain, and the mystery of which most ordinary people did not even suspect.’

      A magnificent statue of Isaac Newton was put up at Trinity College, Cambridge, thirty years after his death, in 1757, at the dawn of the Romantic age. An undergraduate at St John’s, the college next-door to Trinity over the wall, could see it from his window, and was deeply impressed. William Wordsworth remembered long after in The Prelude:

      And from my pillow, looking forth by light

      Of moon or favouring stars, I could behold

      The Antechapel where the Statue stood

      Of Newton, with his prism and silent face,

      The marble index of a Mind for ever

      Voyaging through strange seas of Thought, alone.

      So, by the time the story of Newton and the apple reached Byron, it had already become the most famous and romantic ‘eureka moment’ in science history. This allowed Byron to give it a neat, mischievous twist in Don Juan (1821):

      When Newton saw an apple fall, he found

      In that slight startle from his contemplation –

      ’Tis said (for I’ll not answer above ground

      For any sage’s creed or calculation) –

      A mode of proving that the earth turn’d round

      In a most natural whirl, called ‘gravitation’;

      And this is the sole mortal who could grapple,

      Since Adam, with a fall or with an apple.

      Byron asked whether Newton’s ‘apple of knowledge’ was a Biblical or a scientific fruit. He also wondered if the fruit would be good or bad for mankind:

      Man fell with apples, and with apples rose,

      If this be true; for we must deem the mode

      In which Sir Isaac Newton could disclose,

      Through the then-unpaved Stars, the turnpike road,

      A thing to counterbalance human woes:

      For ever since, immortal man hath glow’d

      With all kinds of mechanics, and full soon

      Steam-engines will conduct him to the moon.

      Byron was a little premature about journeys to the moon, though not about steam engines. But his remark about Newton constructing a ‘turnpike road’ of scientific knowledge through the stars with his law of gravity contained another hidden joke, and even a prophecy. For although turnpikes revolutionised coach travel in his day, they no longer provided free transport. All turnpikes charged road tolls to the traveller. Similarly, Byron implied, scientific knowledge might perhaps have to be paid for sometime in the near future.

      3

      Byron was certainly right that the Romantic age was full of ‘mechanics’ – meaning technical inventions and discoveries. It is often not fully appreciated, especially by students and scholars of literature, that between 1770 and 1830, the high period of literary Romanticism, there was an explosion of new physical and scientific knowledge. This was not just a question of canals, turnpikes and steam pumps. Indeed, the catalogue of scientific discoveries and inventions at this time is truly astonishing.

      The technological inventions, so often overlooked, include Thomas Harrison’s No. 1 Sea Watch or chronometer, which allowed the calculation of longitude at sea, and which was refined throughout the 1770s; high-powered reflector telescopes were also developed during the same period; and James Watt’s steam engine and condenser pump, based on the experiments of Joseph Black, were first put into full production in 1776. The first man-carrying balloons date from 1783; the first Ordnance Survey maps using contour lines from 1791; and the first flush water-closet from 1795. The systematic application of the new Voltaic battery pile, which revolutionised chemical analysis, and with it the early study of magnetic fields, both belong to the turn of the century; together with the detection of infra-red and ultra-violet ‘rays’, that is forms of electro-magnetic energy lying beyond the visible spectrum of sunlight. The first steam-powered ship, the Charlotte Dundas, was launched in1801; the first gas street-lighting was installed in 1807; the electric arc lamp was invented in 1810; and the miner’s safety lamp in 1816. The first polarised lighthouse lens was fitted in 1822; and the earliest successful photographic plates, using bitumen and then silver salts, began to appear from 1826.

      In a more philosophical vein, there were the momentous strides in cosmology. These sprang from the discovery of the first new planet since the time of Ptolemy, Uranus, in March 1781; the asteroid belt between Jupiter and Saturn, and within it the planetoid Ceres, in 1801; and the gradual refinement of the ‘nebular hypothesis’, concerning the gravitational evolution of our entire solar system, and by implication of all star systems. From this arose the radical hypothesis of galaxies evolving outside our own Milky Way – for example, Andromeda – and thus the notion of a continuous ‘natural creation’, following an original cosmic Big Bang (specifically proposed by Erasmus Darwin). The delicate question of whether this was the direct handiwork of the Divine Intelligence, or of some more remote First Cause, or simply of Nature herself, was a debate that launched modern ‘cosmology’ as a truly independent scientific discipline, rather than as a branch of theology. One may date this from the published papers of William Herschel at the Royal Society in the 1780s, and of Pierre-Simon Laplace at the Académie des Sciences in the 1790s. The intellectual significance of these developments was considered in A Preliminary Discourse on the Study of Natural Philosophy, by William Herschel’s brilliant son Sir John Herschel, in 1831.

      In what was in effect the signature science of the age, there were fundamental advances in chemistry. These finally dispersed the lingering delusions of alchemy, and the ancient theory of the four irreducible ‘prime elements’ of earth, air, fire and water. The whole concept of ‘matter’ itself was revolutionised. Starting with the decomposition of water by ‘electrolysis’ (using the Voltaic battery), which revealed separately quantifiable components of oxygen and hydrogen, there swiftly followed the resolution of a host of new chemical elements such as sodium, potassium, chlorine, calcium, barium and magnesium, between 1808 and 1820. Parallel with this went the analysis of fire as the ‘combustion’ of oxygen, not as the production of mysterious ‘phlogiston’. Air itself was now further analysed, yielding alongside hydrogen and oxygen a whole range of previously unsuspected new ‘gases’ (‘artificial airs’), such as carbon dioxide, carbon monoxide, nitrogen and nitrous oxide (the famous laughing gas), and an early concept of anaesthesia by Humphry Davy in 1799. From all this arose early atomic theory, and the first published Periodic Tables by John Dalton, naming five elements in 1803, twenty elements in 1808, and thirty-six elements in 1827. Again, much of this work was summarised in the first ever ‘popular science’ classic of the Romantic age – written significantly enough by a woman, and a mathematician – Mary Somerville’s On the Connexion of the Physical Sciences (1834).

Скачать книгу