SCIENCE AND TECHNOLOGY XXI: New Physica, Physics X.0 & Technology X.0. Azamat Abdoullaev

Чтение книги онлайн.

Читать онлайн книгу SCIENCE AND TECHNOLOGY XXI: New Physica, Physics X.0 & Technology X.0 - Azamat Abdoullaev страница 3

SCIENCE AND TECHNOLOGY XXI: New Physica, Physics X.0 & Technology X.0 - Azamat Abdoullaev

Скачать книгу

biosphere or Earth ecosystem) works and evolves, including the study of the atmosphere, hydrosphere, lithosphere, and biosphere, involving atmospheric science and environmental science, geology and geography, geoinformatics, glaciology, oceanography and soil science.

      Physics

      The core of physical science, physics, deals with the structure of the matter and the interactions of the fundamental constituents of the universe, including all the hypothetical constructs like as “dark energy”, “dark matter”, or “dark force”. It is the science that treats of matter and energy, forces and interactions and their regularities and laws governing the reciprocal interplay while being tested and proved by analysis and observation, control and measurement.

      Mathematics

      Mathematics, as the key tool of natural science, is emerging as the abstract science of structure, order and relationship. As applied mathematics, mathematical physics has to generate a complete and consistent representation of nature as the system of natural entities, forces and changes, the total sum of material existences and forces in the universe, all in terms of mathematical systems of definitions and axioms, rules, as the function rule, principles, as duality, and theorems, deduced laws.

      Natural Ontology

      Natural ontology is the study of the universe as such, the basic features of all the universe, as the nature of force, matter and energy, space and time, natural entities and cause-effect relationships. As an example, mathematical and theoretical physics is to combine physics, mathematics and theoretical ontology of nature. Or, the unity of the all forces of nature is an ontological axiom.

      Therefore, despite seeming differences, all the physical sciences are interrelated by the basic principles underlying all natural processes, phenomena and interactions, provided by the principal natural science of physics.

      Modern Physics: Its Key Subjects and Principles

      “Physics has evolved and continues to evolve without any single strategy”, while its ultimate goal to find a unified set of principles and laws governing force and energy, matter and change, at micro-, meso– and macro-world (Physical Sciences, the New Encyclopedia Britannica, 25, Knowledge in Depth, Chicago-Toronto, Encyclopedia Britannica, Inc., 1994 ).

      Generally, the key achievements in physical science lie in the serendipitous and intuitive and ingenious discovering of empirical physical laws and effects, subatomic entities, symmetry principles, conservation laws, or unified force fields (See Supplement 1. All Nobel Prizes in Physics. Available: https://www.nobelprize.org/nobel_prizes/physics/laureates/).

      Modern physics was founded as an empirical synthesis of separate sciences: mechanics, optics, acoustics, electricity, magnetism, heat and studies of matter and its properties.

      Meantime, the whole idea of physics consisted in the intuitive understanding that different forces of nature and forms of energy are INTERRELATED and INTERCONVERTIBLE, but these universal phenomena have never been expressly formulated as the basic laws of nature. The Faraday’s intuitive belief in the unity of the forces of nature, or that all the forces of nature are but manifestations of a single universal force and must be convertible one into another made possible the classical electromagnetic field theory, the foundation of modern physics.

      Modern physics includes the subjects of gravitation, mechanics and sound, particles and atoms, thermodynamics and heat, electricity and magnetism, light and electromagnetic radiation. Its main task is the nature, origin, actions and interactions of force-fields, gravitational, electromagnetic and nuclear, the strong color force between quarks and the weak nuclear interactions, all mediated by the quanta exchange, as vector gauge symmetry bosons.

      In all, modern physics viewed as natural science doing the general analysis of nature to understand how the universe behaves, while being in the space of force fields and relying on a few simple laws and principles of nature and the universe.

      Among the fundamental principles, causes and theories of the universe there are

      unity and diversity,

      reversibility and convertibility,

      regularity and order,

      symmetry and conservation,

      change and motion,

      relativity and space and time,

      mass and energy,

      fields and forces,

      as well as thermodynamics, equilibrium and nonequilibrium, classic and statistical,

      mechanics, classical and statistical, quantum and relativistic, field theory, nonlinear dynamic systems theory, quantum gravity, or theory of everything.

      The fundamental axioms and postulates of physics are that “all is relative”, interrelated and interacted, in the physical universe, space and time, mass and motion, energy and force, but the basic principles and laws, as reversibility and convertibility, symmetry and conservation.

      The symmetry concept and its symmetry operations, what led the natural philosophy of Newton and defined relativity and quantum theory, are mutually related to the conservation concept and its laws of invariances. Each conservation law (of energy or momentum or mass-energy, quantum numbers or baryon number and lepton number) has a corresponding symmetry, or invariance and uniformity (as time reversal or space inversion or parity and internal symmetries).

      And all is generally specified by the algebraic concept of symmetry groups, as Lie and finite groups, going as the foundation for the fundamental theories of modern physics. The idea is to further unify the electroweak forces with quantum gravity forces transmitted by the massless quanta of gravitons.

      Most of modern theoretical physics is about the types of symmetries of the Universe and finding the invariants (under all the symmetries) to construct field theories as its general models, like as the Standard model of CPT symmetry. It is to describe the fundamental forces and fields predicting that the exchanged particles called gauge bosons are the fundamental means by which forces are emitted and absorbed.

      New Physics: From the Elemental Forces to the Prime Proto Force and Inverted Universe

      In modern physics, all of the forces in the universe are based on four fundamental interactions: the strong and weak forces as nuclear forces acting at very short distances and responsible for the interactions between subatomic particles; the electromagnetic force acting between electric charges, and the gravitational force acting between masses, as the Earth-body system.

      All of the forces in the universe are tended to be interrelated and united as a single super symmetrical force or supra power, one proto force. The idea of force as pervading all space and matter revolutionized Newtonian physics of classical mechanics. In 1820, Orsted made a critical discovery guided by his firm belief that chemical affinity, electricity, heat, magnetism, gravitation and light are simply manifestations of the basic forces of attraction and repulsion. The unified field theory of a single fundamental force had fully occupied Einstein for 30 years.

      The weak and electromagnetic forces are already manifestations or expressions of a more fundamental electroweak interaction. A Grand Unified Theory (GUT) is to relate the electroweak interaction with the strong force of QCD.

      Theories of everything are to integrate GUTs with quantum gravity theories, which include string theory, loop quantum gravity, or twistor theory, looking for a graviton

Скачать книгу