Научные исследования. Лиза Заикина

Чтение книги онлайн.

Читать онлайн книгу Научные исследования - Лиза Заикина страница 4

Научные исследования - Лиза Заикина

Скачать книгу

style="font-size:15px;">      Мn-1<Мn<Мn-1

      Доказательство:

      Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4<Мn<М4.

      Пример. Дети вырезали несколько треугольников. Потом решили из треугольников вырезать новые треугольники, а из них уже круги. Могут ли дети из круга вновь вырезать треугольники?

      Решение: Представим треугольник в виде М3, а круг – Mn, тогда согласно условию М3<M3<Mn. Следовательно, Mn<M3

      Ответ: Дети могут из круга вырезать новые треугольники.

      Теорема 6. N-е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.

      Тn=P, если R=P-Tn=0

      Доказательство:

      Пусть T1+T2+…+Tn=P, то R=P-T1-T2-…-Tn=0. Для того чтобы N-е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R=P-T1-T2-…-Tn=T1+T2+…+Tn-T1-T2-…-Tn=0 и получим равенство прямоугольников Tn с квадратом.

      Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?

      Решение: Т=5, P – квадратное дно, R-?

      Используя общую формулу R=P-Tn, получим R=P-5. То есть размер пяти прямоугольников будет равен размеру квадрата.

      Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.

      Теорема 7. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.

      F=F, но F*Ri=P

      Доказательство:

      Пусть фигура F – круг. Увеличивая радиус R пропорционально центра круга, нужно учитывать, что радиус может измениться. Следовательно, F*Ri=P, где Р – это уже не круг.

      Пример. Мальчик на дороге нарисовал мелом круг, затем вокруг первого круга второй круг, но получился овал. Почему у мальчика получился овал, а не круг?

      Решение: F круг, P-овал, R-?

      Используя общую формулу F*Ri=P, получим Ri=P/F. Когда мальчик рисовал круг, его радиус был непостоянен.

      Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.

      Теорема 8. Множество точек Хn образует фигуру P, которая определяет их расположение. На расположение точек оказывают влияние и разные факторы f. Таким образом точки Хn под влиянием факторов f образуют ту или иную фигуру P.

      Х1*f+Х2*f+…+Хn*f=P

      Доказательство:

      Пусть мы имеем две точки Х1 и Х2, на одну из точек повлиял фактор f, тогда мы получим фигуру Р согласно формуле Х1*f+Х2 =P.

      Пример. Работник имел 130 кирпичей для строительства стены. 1 кирпича он недосчитался, 2 – у него раскололись. Получилось ли у работника построить стену, если для ее строительства требовалось 100 кирпичей.

Скачать книгу