Философы Древней Греции. Роберт Брамбо
Чтение книги онлайн.
Читать онлайн книгу Философы Древней Греции - Роберт Брамбо страница 25
Четвертая загадка Зенона заставляет нас еще раз вернуться на стадион. Ахилл и черепаха ушли – может быть, вопреки Зенону, они все-таки дошли до двери, – и вместо них перед нами три движущихся «тела» – повозки или колесницы, – выстроенные в определенном порядке. Одна стоит, вторая проезжает мимо нее. Сколько времени нужно второй, чтобы проехать расстояние, равное длине колесницы?
Это, разумеется, зависит от скорости движущейся колесницы. Но какую бы скорость мы себе ни представили, нас просят принять «время проезда расстояния, равного одной длине колесницы», за единицу времени. (Здесь нужно заметить, что для здравомыслящего грека, любителя гонок на колесницах, длина колесницы была естественной мерой и расстояния, на которое одна колесница обгоняет другую, и времени, на которое раньше она финиширует.) А теперь представим себе, что третья колесница движется с той же скоростью, что вторая, но в противоположном направлении. Когда эти две колесницы проезжают одна мимо другой, время, необходимое каждой из них, чтобы проехать расстояние, равное одной длине колесницы, равно лишь половине исходной единицы. Итак, заключает Зенон свой парадокс, пол-единицы времени равняются целой единице времени. Этот его аргумент, когда оказывается понят, сильно озадачивает любого человека, который всегда считал само собой разумеющимся, что движение и покой – абсолютные противоположности. Те ответы, которые приходят в этом случае на ум нам самим, пришли в наш здравый смысл из теории относительности. Мы понимаем, что движение, конечно, всегда происходит относительно какой-то системы координат, то есть одна и та же колесница имеет разные скорости в зависимости от способа, которым измеряется скорость. Для слушателей Зенона эта мысль вовсе не была привычной. Если бы Зенон сказал в своем выводе: «Поэтому одно и то же движущееся тело одновременно имеет разные скорости», слушатели посчитали бы это такой же нелепостью, как то, что он им предложил: что целый отрезок времени равен половине этого отрезка.
ПАРАДОКС ЗЕНОНА «СТАДИОН»
AAA находится в покое, BBB движется от знака поворота, а CCC движется к знаку поворота с той же скоростью. Если мы примем «время проезда расстояния, равного одной длине колесницы», за единицу времени и измерим его по движению B относительно A, то B проедет мимо C за половину этого времени. Это противоречит представлению о том, что исходная выбранная единица времени была неделимой. Этот аргумент можно применить, чтобы показать, что не может быть наименьшего неделимого отрезка времени.
Хотя современному читателю ясно, что Зенон действительно обнаружил важную истину, наш здравый смысл XX века настолько привык к тому, что скорость относительна, что эта четвертая задача для нас менее интересна, чем остальные три. Однако, если мы посмотрим на эти парадоксы как на критические выпады против «научных» идей о движении, которые излагали прифагорейцы, мы обнаружим, что в этом последнем из четырех парадоксов Зенон