Применение гистограмм в управлении качеством. Учебное пособие. В. Ю. Арьков
Чтение книги онлайн.
Читать онлайн книгу Применение гистограмм в управлении качеством. Учебное пособие - В. Ю. Арьков страница 3
Объём выборки равен 30000. Исходные данные округляем до десятых, то есть до одного знака после запятой.
Задание. Укажите в отчёте номер варианта и опишите его.
4. Форма распределения
Вначале рассмотрим форму нормального распределения. Мы будем использовать функцию плотности вероятности р (х). Нормальное распределение в общем виде описывается уравнением (4.1).
В этой формуле использованы следующие обозначения:
х – значение случайной величины;
p – вероятность того, что случайная величина примет значение, равное х;
μ – математическое ожидание – для дальнейшей работы почти то же самое, что и среднее значение;
σ – с.к.о., или среднее квадратичное отклонение, или стандартное отклонение, или сигма – параметр распределения, характеризующий разброс вокруг среднего значения;
π – число «пи», равное 3,14159…;
е – число Эйлера, равное 2,718…
Вопрос. Что такое СКО?
Задание. Напишите формулу для нормального распределения на листе бумаги и вставьте в электронный отчёт.
Зная характеристики распределения, можно приблизительно оценить общий вид графика – симметричный, колоколообразный. Единственная вершина соответствует среднему значению. Правило трёх сигм даёт возможность определить примерные границы значений:
СРЕДНЕЕ ПЛЮС-МИНУС ТРИ СИГМЫ.
За пределами этого диапазона значений почти нет. График спадает до нуля. Подробности можно найти в работе [1]. Пример для нулевого варианта приводится на рис. 4.1.
Рис. 4.1. Форма распределения
Задание. Сделайте зарисовку формы распределения для своего варианта задания и вставьте в отчёт. Зарисовка делается СХЕМАТИЧНО. Особая точность и художественный талант в этом задании не требуются.
При вычислениях нам придётся столкнуться с особенностями работы Excel. Эта программа различает минус как ЗНАК ЧИСЛА и минус как операцию ВЫЧИТАНИЯ. На вид это один и тот же символ. Но программа обрабатывает их по-разному. Различается порядок выполнения операций.
Чтобы познакомиться с этой особенностью, введём следующие формулы:
= -2^2
= 2—2^2
= – (2^2)
Результаты опыта приведены на рис. 4.2.
Рис. 4.2. Обработка минуса
Выясняется, что знак числа обрабатывается до возведения в степень. Поэтому