Площадь и башня. Cети и власть от масонов до Facebook. Ниал (Нил) Фергюсон

Чтение книги онлайн.

Читать онлайн книгу Площадь и башня. Cети и власть от масонов до Facebook - Ниал (Нил) Фергюсон страница 19

Площадь и башня. Cети и власть от масонов до Facebook - Ниал (Нил) Фергюсон

Скачать книгу

скажется переданная информация на них самих – положительно или отрицательно. С другой стороны, для того чтобы идея оказалась воспринята, требуется, чтобы ее передал не один источник и даже не два, а больше. Сложная культурная инфекция, в отличие от простого эпидемического заболевания, для начала требует набрать критическую массу первых сторонников, обладающих высокой центральностью по степени (то есть сравнительно большим количеством влиятельных друзей)[174]. По словам Дункана Уоттса, главное при оценке вероятности каскадного эффекта, напоминающего заражение, – “сосредоточиться не на самом стимуле, а на структуре сети, по которой расходится этот стимул”[175]. Это помогает объяснить, почему на каждую идею, которая разлетелась по свету молниеносно, как вирус, приходится множество других идей, которые прозябают в безвестности и выдыхаются только потому, что начали свой путь с неудачного узла, неудачного кластера или из неудачной сети.

      Глава 7

      Разновидности сетей

      Если бы все общественные сети были устроены одинаково, мы жили бы в совершенно ином мире. Например, мир, в котором вершины (узлы) соединялись бы друг с другом произвольным образом – так что количество ребер, приходящихся на одну вершину, распределялось бы по колоколообразной кривой, – обладал бы некоторыми свойствами “тесного мира”, но не был бы похож на наш[176]. Дело в том, что во многих реально существующих сетях наблюдается принцип распределения Парето: в них имеется больше вершин с очень большим количеством ребер и больше вершин с очень малым количеством ребер, чем бывает в случайных сетях. Это вариант того феномена неравномерного распределения преимуществ, который социолог Роберт К. Мертон назвал “эффектом Матфея” – из‐за слов в Притче о талантах из Евангелия от Матфея: “ибо всякому имеющему дастся и приумножится, а у неимеющего отнимется и то, что имеет”[177]. В науке успех порождает успех: тому, у кого уже есть награды, и впредь будет доставаться больше наград. Нечто подобное наблюдается и в “экономике суперзвезд”[178]. Точно так же, по мере расширения многих крупных сетей, узлы приобретают новые ребра пропорционально тому количеству, которое у них уже имеется (это их степень, или “пригодность”). Иными словами, наблюдается “предпочтительное присоединение”. Этим открытием мы обязаны физикам Альберту-Ласло Барабаши и Реке Альберт, которые первыми выдвинули предположение о том, что большинство реально существующих сетей, возможно, подчиняются при распределении степенному закону или являются “безмасштабными”[179]. По мере развития таких сетей некоторые узлы становятся связующими центрами и приобретают гораздо больше ребер, чем остальные узлы[180]. Примеров подобных сетей очень много – от директоров тысячи крупнейших компаний, по версии Fortune, до цитат в физических журналах и ссылок на веб-страницы[181]. По словам Барабаши,

      существует иерархия связующих

Скачать книгу


<p>174</p>

Centola and Macy, ‘Complex Contagions’.

<p>175</p>

Watts, Six Degrees, 249.

<p>176</p>

Случайные сети впервые исследовали знаменитый обилием научных работ и часто цитируемый математик Пал Эрдёш и один из его многочисленных соавторов Альфред Реньи. Случайный граф получается, если разместить на плоскости множество n вершин, а затем произвольным образом соединять их попарно, пока не появится множество ребер m. Каждую вершину можно выбирать более одного раза или же не выбирать вовсе. (Прим. авт.)

<p>177</p>

Мф 25:28. (Прим. пер.)

<p>178</p>

Rosen, ‘The Economics of Superstars’.

<p>179</p>

Про модели распределения, подчиняющиеся степенному закону, говорят, что у них “утяжеленные хвосты”, поскольку относительная вероятность очень высокой степени и очень низкой степени выше, чем в тех случаях, когда связи образуются случайным образом. В строгом смысле термин “безмасштабность” относится к тому факту, “что относительная частота узлов со степенью d по сравнению с узлами со степенью равняется относительной частоте узлов со степенью kd по сравнению с узлами со степенью kd´, когда происходит изменение масштаба при помощи произвольного фактора k > 0”. В безмасштабной сети не существует типичного узла, однако “масштаб” различий между узлами представляется везде одинаковым. Иначе говоря, для безмасштабного мира характерна фрактальная геометрическая структура: село – это большая семья, город – большое село, а королевство – большой город. (Прим. авт.)

<p>180</p>

Barabási and Albert, ‘Emergence of Scaling in Random Networks’.

<p>181</p>

Barabási, Linked, 33–34, 66, 68f., 204.