The Power of Movement in Plants. Charles Darwin
Чтение книги онлайн.
Читать онлайн книгу The Power of Movement in Plants - Charles Darwin страница 21
breaks through the ground as an arch (Fig. 57). Abronia has only a single fully developed cotyledon, but in this case it is the hypocotyl which first emerges and is arched. Abronia umbellata, however, presents this peculiarity, that the enfolded blade of the one developed cotyledon (with the enclosed endosperm) whilst still beneath the surface has its apex upturned and parallel to the descending leg of the arched hypocotyl; but it is dragged out of the ground by the continued growth of the hypocotyl, with the apex pointing downward. With Cycas pectinata the cotyledons are hypogean, and a true leaf first breaks through the ground with its petiole forming an arch.
Fig. 57. Cyclamen Persicum: seedling, figure enlarged: c, blade of cotyledon, not yet expanded, with arched petiole beginning to straighten itself; h, hypocotyl developed into a corm; r, secondary radicles.
Fig. 58. Acanthus mollis: seedling with the hypogean cotyledon on the near side removed and the radicles cut off; a, blade of first leaf beginning to expand, with petiole still partially arched; b, second and opposite leaf, as yet very imperfectly developed; c, hypogean cotyledon on the opposite side.
In the genus Acanthus the cotyledons are likewise hypogean. In A. mollis, a single leaf first breaks through the ground with its petiole arched, and with the opposite leaf much less developed, short, straight, of a yellowish colour, and with the petiole at first not half as thick as that of the other. The undeveloped leaf is protected by standing beneath its arched fellow; and it is an instruc- [page 79] tive fact that it is not arched, as it has not to force for itself a passage through the ground. In the accompanying sketch (Fig. 58) the petiole of the first leaf has already partially straightened itself, and the blade is beginning to unfold. The small second leaf ultimately grows to an equal size with the first, but this process is effected at very different rates in different individuals: in one instance the second leaf did not appear fully above the ground until six weeks after the first leaf. As the leaves in the whole family of the Acanthaceae stand either opposite one another or in whorls, and as these are of equal size, the great inequality between the first two leaves is a singular fact. We can see how this inequality of development and the arching of the petiole could have been gradually acquired, if they were beneficial to the seedlings by favouring their emergence; for with A. candelabrum, spinosus, and latifolius there was a great variability in the inequality between the two first leaves and in the arching of their petioles. In one seedling of A. candelabrum the first leaf was arched and nine times as long as the second, which latter consisted of a mere little, yellowish-white, straight, hairy style. In other seedlings the difference in length between the two leaves was as 3 to 2, or as 4 to 3, or as only .76 to .62 inch. In these latter cases the first and taller leaf was not properly arched. Lastly, in another seedling there was not the least difference in size between the two first leaves, and both of them had their petioles straight; their laminae were enfolded and pressed against each other, forming a lance or wedge, by which means they had broken through the ground. Therefore in different individuals of this same species of Acanthus the first pair of leaves breaks through the ground by two widely different methods; and if [page 80] either had proved decidedly advantageous or disadvantageous, one of them no doubt would soon have prevailed.
Asa Gray has described* the peculiar manner of germination of three widely different plants, in which the hypocotyl is hardly at all developed. These were therefore observed by us in relation to our present subject.
Delphinium nudicaule.—The elongated petioles of the two cotyledons are confluent (as are sometimes their blades at the base), and they break through the ground as an arch. They thus resemble in a most deceptive manner a hypocotyl. At first they are solid, but after a time become tubular; and the basal part beneath the ground is enlarged into a hollow chamber, within which the young leaves are developed without any prominent plumule. Externally root-hairs are formed on the confluent petioles, either a little above, or on a level with, the plumule. The first leaf at an early period of its growth and whilst within the chamber is quite straight, but the petiole soon becomes arched; and the swelling of this part (and probably of the blade) splits open one side of the chamber, and the leaf then emerges. The slit was found in one case to be 3.2 mm. in length, and it is seated on the line of confluence of the two petioles. The leaf when it first escapes from the chamber is buried beneath the ground, and now an upper part of the petiole near the blade becomes arched in the usual manner. The second leaf comes out of the slit either straight or somewhat arched, but afterwards the upper part of the petiole—certainly in some, and we believe in all cases—arches itself whilst forcing a passage through the soil.
* 'Botanical Text-Book,' 1879, p. 22. [page 81]
Megarrhiza Californica.—The cotyledons of this Gourd never free themselves from the seed-coats and are hypogean. Their petioles are completely confluent, forming a tube which terminates downwards in a little solid point, consisting of a minute radicle and hypocotyl, with the likewise minute plumule enclosed within the base of the tube. This structure was well exhibited in an abnormal specimen, in which one of the two cotyledons failed to produce a petiole, whilst the other produced one consisting of an open semicylinder ending in a sharp point, formed of the parts just described. As soon as the confluent petioles protrude from the seed they bend down, as they are strongly geotropic, and penetrate the ground. The seed itself retains its original position, either on the surface or buried at some depth, as the case may be. If, however, the point of the confluent petioles meets with some obstacle in the soil, as appears to have occurred with the seedlings described and figured by Asa Gray,* the cotyledons are lifted up above the ground. The petioles are clothed with root-hairs like those on a true radicle, and they likewise resemble radicles in becoming brown when immersed in a solution of permanganate of potassium. Our seeds were subjected to a high temperature, and in the course of three or four days the petioles penetrated the soil perpendicularly to a depth of from 2 to 2½ inches; and not until then did the true radicle begin to grow. In one specimen which was closely observed, the petioles in 7 days after their first protrusion attained a length of 2½ inches, and the radicle by this time had also become well developed. The plumule, still enclosed within the tube, was now
* 'American Journal of Science,' vol. xiv. 1877, p. 21. [page 82]
.3 inch in length, and was quite straight; but from having increased in thickness it had just begun to split open the lower part of the petioles on one side, along the line of their confluence. By the following morning the upper part of the plumule had arched itself into a right angle, and the convex side or elbow had thus been forced out through the slit. Here then the arching of the plumule plays the same part as in the case of the petioles of the Delphinium. As the plumule continued to grow, the tip became more arched, and in the course of six days it emerged through the 2½ inches of superincumbent soil, still retaining its arched form. After reaching the surface it straightened itself in the usual manner. In the accompanying figure (Fig. 58, A) we have a sketch of a seedling in this advanced state of development; the surface of the ground being represented by the line G … … . … .G.
Fig. 58, A. Megarrhiza Californica: sketch of seedling, copied from Asa Gray, reduced to one-half scale: c, cotyledons within seed-coats; p, the two confluent petioles; h and r, hypocotyl and radicle; p1, plumule; G … … . … G, surface of soil.
The germination of the seeds in their native Californian home proceeds in a rather different manner, as we infer from an interesting letter from Mr. Rattan, sent to us by Prof. Asa Gray. The petioles protrude from the seeds soon after the autumnal rains, and penetrate the ground, generally in a vertical direction, to a depth of from 4 to even 6 inches. they were found in this state by Mr. Rattan during the Christmas vacation, with the plu- [page 83] mules still enclosed within the tubes; and he remarks that if the plumules had been at once developed and had reached the surface (as occurred with our seeds which were exposed to a high temperature), they would surely have been killed by the frost. As it is, they lie dormant at some depth beneath the surface, and are thus protected from the cold; and the root-hairs on the petioles would supply them with sufficient moisture. We