The Power of Movement in Plants. Charles Darwin

Чтение книги онлайн.

Читать онлайн книгу The Power of Movement in Plants - Charles Darwin страница 6

Автор:
Серия:
Издательство:
The Power of Movement in Plants - Charles  Darwin

Скачать книгу

need read all the details, which, however, we have thought it advisable to give. To save the reader trouble, the conclusions and most of the more important parts have been printed in larger type than the other parts. He may, if he thinks fit, read the last chapter first, as it includes a summary of the whole volume; and he will thus see what points interest him, and on which he requires the full evidence.

      Finally, we must have the pleasure of returning our [page 9] sincere thanks to Sir Joseph Hooker and to Mr. W. Thiselton Dyer for their great kindness, in not only sending us plants from Kew, but in procuring others from several sources when they were required for our observations; also, for naming many species, and giving us information on various points. [page 10]

       Table of Contents

      Brassica oleracea, circumnutation of the radicle, of the arched hypocotyl

       whilst still buried beneath the ground, whilst rising above the ground and

       straightening itself, and when erect—Circumnutation of the cotyledons—

       Rate of movement—Analogous observations on various organs in species of

       Githago, Gossypium, Oxalis, Tropaeolum, Citrus, Aesculus, of several

       Leguminous and Cucurbitaceous genera, Opuntia, Helianthus, Primula,

       Cyclamen, Stapelia, Cerinthe, Nolana, Solanum, Beta, Ricinus, Quercus,

       Corylus, Pinus, Cycas, Canna, Allium, Asparagus, Phalaris, Zea, Avena,

       Nephrodium, and Selaginella.

      THE following chapter is devoted to the circumnutating movements of the radicles, hypocotyls, and cotyledons of seedling plants; and, when the cotyledons do not rise above the ground, to the movements of the epicotyl. But in a future chapter we shall have to recur to the movements of certain cotyledons which sleep at night.

      [Brassica oleracea (Cruciferae)'.—Fuller details will be given with respect to the movements in this case than in any other, as space and time will thus ultimately be saved.

      Radicle.—A seed with the radicle projecting .05 inch was fastened with shellac to a little plate of zinc, so that the radicle stood up vertically; and a fine glass filament was then fixed near its base, that is, close to the seed-coats. The seed was surrounded by little bits of wet sponge, and the movement of the bead at the end of the filament was traced (Fig. 1) during sixty hours. In this time the radicle increased in length from .05 to .11 inch. Had the filament been attached at first close to the apex of the radicle, and if it could have remained there all the time, the movement exhibited would have [page 11] been much greater, for at the close of our observations the tip, instead of standing vertically upwards, had become bowed downwards through geotropism, so as almost to touch the zinc plate. As far as we could roughly ascertain by measurements made with compasses on other seeds, the tip alone, for a length of only 2/100 to 3/100 of an inch, is acted on by geotropism. But the tracing shows that the basal part of the radicle continued to circumnutate irregularly during the whole time. The actual extreme amount of movement of the bead at the end of the filament was nearly .05 inch, but to what extent the movement of the radicle was magnified by the filament, which was nearly ¾ inch in length, it was impossible to estimate.

      Fig. 1. Brassica oleracea: circumnutation of radicle, traced on horizontal glass, from 9 A.m. Jan. 31st to 9 P.m. Feb. 2nd. Movement of bead at end of filament magnified about 40 times.

      Another seed was treated and observed in the same manner, but the radicle in this case protruded .1 inch, and was not Fig. 2. Brassica oleracea: circumnutating and geotropic movement of radicle, traced on horizontal glass during 46 hours.

      fastened so as to project quite vertically upwards. The filament was affixed close to its base. The tracing (Fig. 2, reduced by half) shows the movement from 9 A.m. Jan. 31st to 7 A.m. Feb. 2nd; but it continued to move during the whole of the [page 12] 2nd in the same general direction, and in a similar zigzag manner. From the radicle not being quite perpendicular when the filament was affixed geotropism came into play at once; but the irregular zigzag course shows that there was growth (probably preceded by turgescence), sometimes on one and sometimes on another side. Occasionally the bead remained stationary for about an hour, and then probably growth occurred on the side opposite to that which caused the geotropic curvature. In the case previously described the basal part of the very short radicle from being turned vertically upwards, was at first very little affected by geotropism. Filaments were affixed in two other instances to rather longer radicles protruding obliquely from seeds which had been turned upside down; and in these cases the lines traced on the horizontal glasses were only slightly zigzag, and the movement was always in the same general direction, through the action of geotropism. All these observations are liable to several causes of error, but we believe, from what will hereafter be shown with respect to the movements of the radicles of other plants, that they may be largely trusted.

      Hypocotyl.—The hypocotyl protrudes through the seed-coats as a rectangular projection, which grows rapidly into an arch like the letter U turned upside down; the cotyledons being still enclosed within the seed. In whatever position the seed may be embedded in the earth or otherwise fixed, both legs of the arch bend upwards through apogeotropism, and thus rise vertically above the ground. As soon as this has taken place, or even earlier, the inner or concave surface of the arch grows more quickly than the upper or convex surface; and this tends to separate the two legs and aids in drawing the cotyledons out of the buried seed-coats. By the growth of the whole arch the cotyledons are ultimately dragged from beneath the ground, even from a considerable depth; and now the hypocotyl quickly straightens itself by the increased growth of the concave side.

      Even whilst the arched or doubled hypocotyl is still beneath the ground, it circumnutates as much as the pressure of the surrounding soil will permit; but this was difficult to observe, because as soon as the arch is freed from lateral pressure the two legs begin to separate, even at a very early age, before the arch would naturally have reached the surface. Seeds were allowed to germinate on the surface of damp earth, and after they had fixed themselves by their radicles, and after the, as yet, only [page 13] slightly arched hypocotyl had become nearly vertical, a glass filament was affixed on two occasions near to the base of the basal leg (i.e. the one in connection with the radicle), and its movements were traced in darkness on a horizontal glass. The result was that long lines were formed running in nearly the plane of the vertical arch, due to the early separation of the two legs now freed from pressure; but as the lines were zigzag, showing lateral movement, the arch must have been circumnutating, whilst it was straightening itself by growth along its inner or concave surface.

      A somewhat different method of observation was next followed: Fig. 3. Brassica oleracea: circumnutating movement of buried and arched hypocotyl (dimly illuminated from above), traced on horizontal glass during 45 hours. Movement of bead of filament magnified about 25 times, and here reduced to one-half of original scale.

      as soon as the earth with seeds in a pot began to crack, the surface was removed in parts to the depth of .2 inch; and a filament was fixed to the basal leg of a buried and arched hypocotyl, just above the summit of the radicle. The cotyledons were still almost completely enclosed within the much-cracked seed-coats; and these were again covered up with damp adhesive soil pressed pretty firmly down. The movement of the filament was traced (Fig. 3) from 11 A.m. Feb. 5th till 8 A.m. Feb. 7th. By this latter period the cotyledons had been dragged from beneath the pressed-down earth, but the upper part of the hypocotyl still formed nearly a right angle with the lower part. The tracing shows that the arched hypocotyl tends at this

Скачать книгу