Идеальная ставка. Адам Кучарски
Чтение книги онлайн.
Читать онлайн книгу Идеальная ставка - Адам Кучарски страница 6
Проблема, известная как «чувствительная зависимость от начальных условий», заключается в том, что, даже если мы соберем детальную информацию о некоем явлении – будь то вращение рулетки или движение тропического шторма, – малейшее упущение обернется слишком серьезными последствиями. За 70 лет до того, как математик Эдвард Лоренц задал на лекции свой знаменитый вопрос: «Может ли взмах крыльев бабочки в Бразилии запустить торнадо в Техасе?» – Пуанкаре уже в общих чертах обрисовал «эффект бабочки».
Исследования Лоренца, из которых впоследствии выросла теория хаоса, фокусировались главным образом на прогнозировании. Лоренцем двигало стремление научиться более точно предсказывать погоду и заглядывать в будущее. Пуанкаре интересовало нечто противоположное: как много времени требуется для того, чтобы процесс стал непредсказуемым? И можно ли считать таковым движение шарика в рулетке?
Рулетка вдохновила Пуанкаре, однако свой прорыв в науке он осуществил, изучая движение значительно более крупных объектов. В XIX веке астрономы создали карту астероидов, проходящих через созвездия зодиака. Они определили, что астероиды распределяются по звездному небу достаточно равномерно. Пуанкаре хотел понять почему.
Ему было известно, что астероиды подчиняются законам движения Кеплера и что узнать их начальную скорость невозможно. Как заметил Пуанкаре, «звездное небо можно представить в виде гигантской рулетки, на которую Создатель бросил множество шариков». Чтобы понять принцип движения астероидов, Пуанкаре решил сравнить общее расстояние, которое проходит гипотетический объект, с числом его вращений вокруг центра своей орбиты.
Представьте, что вы разворачиваете очень длинный рулон очень гладкой бумаги. Разложив бумагу на полу, вы запускаете по ней шарик. Вслед ему – еще один, еще и еще. Одни шарики вы запускаете быстро, другие медленно. Поскольку бумага ровная, шарик, запущенный быстрее, укатится дальше. Через некоторое время после начала движения шариков вы фиксируете их положение на бумаге, делая надрезы на краю листа бумаги напротив каждого шарика. Затем вы убираете шарики и скручиваете рулон. Теперь, если вы посмотрите на край рулона, каждый надрез сможет оказаться в любой точке окружности. Это происходит потому, что длина листа и, следовательно, расстояние, которое проходят шарики, намного больше диаметра рулона. Даже небольшая разница в дистанциях, пройденных шариками, значительно отразится на расположении надрезов на окружности. Если вы скрутите рулон достаточно туго, чувствительная зависимость от начальных условий приведет к равномерному размещению мест надрезов. Пуанкаре доказал, что то же самое происходит с орбитами астероидов. С течением времени они равномерно распределяются