VERNANIA: The Celebrated Works of Jules Verne in One Edition. Жюль Верн
Чтение книги онлайн.
Читать онлайн книгу VERNANIA: The Celebrated Works of Jules Verne in One Edition - Жюль Верн страница 201
“We shall use a large-grained powder,” answered the major; “its deflagration is the most rapid.”
“No doubt,” replied Morgan; “but it is very brittle, and ends by damaging the chamber of the gun.”
“Certainly; but what would be bad for a gun destined for long service would not be so for our Columbiad. We run no danger of explosion, and the powder must immediately take fire to make its mechanical effect complete.”
“We might make several touchholes,” said J.T. Maston, “so as to set fire to it in several places at the same time.”
“No doubt,” answered Elphinstone, “but that would make the working of it more difficult. I therefore come back to my large-grained powder that removes these difficulties.”
“So be it,” answered the general.
“To load his Columbiad,” resumed the major, “Rodman used a powder in grains as large as chestnuts, made of willow charcoal, simply rarefied in cast-iron pans. This powder was hard and shining, left no stain on the hands, contained a great proportion of hydrogen and oxygen, deflagrated instantaneously, and, though very brittle, did not much damage the mouthpiece.”
“Well, it seems to me,” answered J.T. Maston, “that we have nothing to hesitate about, and that our choice is made.”
“Unless you prefer gold-powder,” replied the major, laughing, which provoked a threatening gesture from the steel hook of his susceptible friend.
Until then Barbicane had kept himself aloof from the discussion; he listened, and had evidently an idea. He contented himself with saying simply—
“Now, my friends, what quantity of powder do you propose?”
The three members of the Gun Club looked at one another for the space of a minute.
“Two hundred thousand pounds,” said Morgan at last.
“Five hundred thousand,” replied the major.
“Eight hundred thousand,” exclaimed J.T. Maston.
This, time Elphinstone dared not tax his colleague with exaggeration. In fact, the question was that of sending to the moon a projectile weighing 20,000 lbs., and of giving it an initial force of 2000 yards a second. A moment of silence, therefore, followed the triple proposition made by the three colleagues.
It was at last broken by President Barbicane.
“My brave comrades,” said he in a quiet tone, “I start from this principle, that the resistance of our cannon, in the given conditions, is unlimited. I shall, therefore, surprise the Honourable J.T. Maston when I tell him that he has been timid in his calculations, and I propose to double his 800,000 lbs. of powder.”
“Sixteen hundred thousand pounds!” shouted J.T. Maston, jumping out of his chair.
“Quite as much as that.”
“Then we shall have to come back to my cannon half a mile long.”
“It is evident,” said the major.
“Sixteen hundred thousand pounds of powder,” resumed the Secretary of Committee, “will occupy about a space of 22,000 cubic feet; now, as your cannon will only hold about 54,000 cubic feet, it will be half full, and the chamber will not be long enough to allow the explosion of the gas to give sufficient impulsion to your projectile.”
There was nothing to answer. J.T. Maston spoke the truth. They all looked at Barbicane.
“However,” resumed the president, “I hold to that quantity of powder. Think! 1,600,000 pounds of powder will give 6,000,000,000 litres of gas.”
“Then how is it to be done?” asked the general.
“It is very simple. We must reduce this enormous quantity of powder, keeping at the same time its mechanical power.”
“Good! By what means?”
“I will tell you,” answered Barbicane simply.
His interlocutors all looked at him.
“Nothing is easier, in fact,” he resumed, “than to bring that mass of powder to a volume four times less. You all know that curious cellular matter which constitutes the elementary tissues of vegetables?”
“Ah!” said the major, “I understand you, Barbicane.”
“This matter,” said the president, “is obtained in perfect purity in different things, especially in cotton, which is nothing but the skin of the seeds of the cotton plant. Now cotton, combined with cold nitric acid, is transformed into a substance eminently insoluble, eminently combustible, eminently explosive. Some years ago, in 1832, a French chemist, Braconnot, discovered this substance, which he called xyloidine. In 1838, another Frenchman, Pelouze, studied its different properties; and lastly, in 1846, Schonbein, professor of chemistry at Basle, proposed it as gunpowder. This powder is nitric cotton.”
“Or pyroxyle,” answered Elphinstone.
“Or fulminating cotton,” replied Morgan.
“Is there not an American name to put at the bottom of this discovery?” exclaimed J.T. Maston, animated by a lively sentiment of patriotism.
“Not one, unfortunately,” replied the major.
“Nevertheless, to satisfy Maston,” resumed the president, “I may tell him that one of our fellow-citizens may be annexed to the study of the celluosity, for collodion, which is one of the principal agents in photography, is simply pyroxyle dissolved in ether to which alcohol has been added, and it was discovered by Maynard, then a medical student.”
“Hurrah for Maynard and fulminating cotton!” cried the noisy secretary of the Gun Club.
“I return to pyroxyle,” resumed Barbicane. “You are acquainted with its properties which make it so precious to us. It is prepared with the greatest facility; cotton plunged in smoking nitric acid for fifteen minutes, then washed in water, then dried, and that is all.”
“Nothing is more simple, certainty,” said Morgan.
“What is more, pyroxyle is not damaged by moisture, a precious quality in our eyes, as it will take several days to load the cannon. Its inflammability takes place at 170° instead of at 240° and its deflagration is so immediate that it may be fired on ordinary gunpowder before the latter has time to catch fire too.”
“Perfect,” answered the major.
“Only it will cost more.”
“What does that matter?” said J.T. Maston.
“Lastly, it communicates to projectiles a speed four times greater than that of gunpowder. I may even add that if 8/10ths of its weight of nitrate of potash