Золото, пуля, спасительный яд. 250 лет нанотехнологий. Генрих Эрлих

Чтение книги онлайн.

Читать онлайн книгу Золото, пуля, спасительный яд. 250 лет нанотехнологий - Генрих Эрлих страница 24

Золото, пуля, спасительный яд. 250 лет нанотехнологий - Генрих Эрлих Galileo

Скачать книгу

макроскопический объект. Образно эти стратегии называются “снизу-вверх” (bottom-up) и “сверху-вниз” (top-down).

      При дальнейшем изложении проблемы лекторы и авторы книг испытают легкий дискомфорт. Единственным примером, который приходит им на ум при обсуждении “общего” метода получения нанообъектов методом “сверху-вниз”, служит банальное механическое измельчение. В рассказе о “революционных” технологиях оно выглядит как-то странно, отсюда и дискомфорт. У некоторых авторов это порождает желание “улучшить” ситуацию, и они записывают в технологии “сверху-вниз” методы, которые таковыми не являются. На руку им играет то, что во многих случаях при получении нанообъектов в качестве исходных используют макроскопические тела. Приведу один пример. Есть такая молекула – фуллерен С60, вылитый футбольный мяч, составленный из шестидесяти атомов углерода (о ней более подробно – в двенадцатой главе). Изумительно красивая молекула и размер – в точности один нанометр, поэтому фуллерен С60 часто используют в качестве символа или эмблемы нанотехнологий. Так вот, получают его сейчас нагреванием при высокой температуре куска графита – в одну стадию! Чем не технология “сверху-вниз”? Но ведь механизм этого процесса состоит в том, что графит испаряется с образованием атомов углерода, которые в газовой фазе “собираются” в молекулу фуллерена, то есть перед нами классический пример метода “снизу-вверх”.

      На самом деле примеры технологий “сверху-вниз” существуют, и по крайней мере один из них мы рассмотрим в дальнейшем. Не разделяю я и несколько пренебрежительного отношения к механическому диспергированию, которое по-прежнему служит наиболее универсальным, а в некоторых случаях и единственным, методом получения многотоннажных количеств нанодисперсных неорганических материалов. Несмотря на кажущуюся простоту, в этом методе имеется множество подводных камней, обойти которые невозможно без использования достижений высокой науки, основы которой были заложены Ребиндером.

      Начнем с главного недостатка метода механического диспергирования – высокого энергопотребления. Понятно, что разрыв химических связей в твердых телах требует затрат большого количества энергии, равно как и обеспечение функционирования самих мельниц. Более того, чем мельче мы измельчаем вещество, тем больше удельный расход энергии. Вы уже понимаете, в чем тут дело: вначале в ход идут крупные дефекты (в них число контактов, которые необходимо разрушить, невелико), а затем все более мелкие трещинки, расколоть по которым крупинку вещества становится все сложнее.

      Как можно уменьшить расход энергии? Тут на помощь приходит эффект Ребиндера. Не поленимся рассмотреть его еще раз, на этот раз с энергетической точки зрения. Поверхность любого объекта обладает избытком энергии по сравнению с его объемом, при размоле образуются новые поверхности, на обеспечение их “избыточной” энергии идет значительная доля энергии, затрачиваемой на весь процесс. Сорбция

Скачать книгу