Нечеткая логика. Феликс Ланге
Чтение книги онлайн.
Читать онлайн книгу Нечеткая логика - Феликс Ланге страница 3
1. Небо – синего цвета.
2. Небо – не синего цвета.
Согласно мировоззрению Аристотеля небо не могло одновременно соответствовать обеим характеристикам. И следует отметить, такая двоичная логика, приписанная Аристотелю, служила людям в течение дальнейших двух тысяч лет и считалась верной.
Постулаты двоичной логики, безусловно, всегда были противоречивы из-за присущих ей категоричных и критичных суждений. Будда, по преданию, жил в Индии за V веков до пришествия Иисуса Христа и почти за II века до появления Аристотеля. Одна из важнейших основ его вероучения заключалась в том, чтобы рассматривать мир через призму цветов, увидев его во всей многогранности, отбросив ненужную черно-белую вуаль.
Эта нечеткая, или серая, тема прослеживается во многих учениях и верованиях, от старых до новых, от учений Лао Цзы до современного Дзена. Постоянное противостояние: утверждение А может быть только верно либо только неверно: А или не А. Видение Аристотеля против видения Будды.
Греки в старые времена называли философов софистами; сегодня софизмом принято называть запутанное, сложное рассуждение. Однажды в своей Академии Платон охарактеризовал человека как «двуногое животное без перьев», и тогда ученик принес мыслителю ощипанного цыпленка для того, чтобы показать всю противоречивость данного высказывания. Зенон Элейский достал песчинку из горсти песка и задал вопрос: является ли теперь горсть песка горстью. То, что сделал Зенон, не повлияло на то, что горсть песка перестала ею быть, но чем больше песка он от нее отнимал, тем меньше горсть песка являлась таковой. Затем возник вопрос о парадоксе лжеца, заключавшегося в следующем рассуждении: «Данное высказывание ложно. Истинно ли данное высказывание?».
Парадокс лжеца: «То, что я утверждаю сейчас, – ложно». Соответственно, получается, что либо «Я лгу», либо «Данное высказывание – ложь». Если высказывание истинно, получается, что, исходя из его содержания, верно то, что данное высказывание – ложь; но если оно ложь, в таком случае получается, что неверно то, что оно утверждает; значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.
Далее Рене Декарт глубоко размышлял об идентичности между объектами, пытаясь найти то самое вещество, которое находилось между тем, как кусочек воска растает и перестанет им быть. Немецкий физик Вернер Гейзенберг показал, что не все научные утверждения либо истинны, либо ложны. Многие, если не большинство утверждений – неопределенны и неточны, они – серо-нечеткие. Бертран Рассел объяснил на основе математики парадокс лжеца, существующий с античных времен. Рассел использовал нестрогое условие «я лгу, но не всегда». Таким образом парадокс перестает быть парадоксом. С тех пор математики и философы пытались исправить эти черно-белые основы, чтобы избавиться