Quantum Computing. Melanie Swan
Чтение книги онлайн.
Читать онлайн книгу Quantum Computing - Melanie Swan страница 18
Overall, the key steps in specifying an effective field theory consist of defining (1) the system, (2) the system elements and interactions, (3) the variables of interest, (4) the irrelevant structure that can be ignored, and (5) the quantitative metrics that can be averaged over the system to produce a temperature-type term. Applying the effective field theory development technique to the smart network context, the idea is to consider the different levels and dimensions of the system, and identify the elements, interactions, and relevant quantities to calculate in order to obtain the system behavior. This is developed in more detail in Chapters 11 and 12.
References
Aldridge, I. & Krawciw, S. (2017). Real-Time Risk: What Investors Should Know About Fintech, High-Frequency Trading and Flash Crashes. Hoboken, NJ: Wiley.
Alemi, A.A. & Fischer, I. (2018). TherML: Thermodynamics of Machine Learning. ICML 2018. Theoretical Foundations and Applications of Deep Generative Models Workshop.
Bitnodes. https://bitnodes.earn.com/. Accessed June 30, 2019.
Boyden, E.S. (2015). Optogenetics and the future of neuroscience. Nat. Neurosci. 18:1200–1.
Brin, D. (2002). Kiln People. New York, NY: Tor Books.
Carroll, S.M., Leichenauer, S. & Pollack, J. (2014). A consistent effective theory of long-wavelength cosmological perturbations. Phys. Rev. D. 90:023518.
Chen, H. & Ho, K. (2018). Integrated space logistics mission planning and spacecraft design with mixed-integer nonlinear programming. J. Spacecr. Rockets. 55(2):365–81.
Dorfler, F., Chertkov, M. & Bullo, F. (2013). Synchronization in complex oscillator networks and smart grids. PNAS 110(6):2005–10.
Duong, T., Todi, K.K. & Chaudhary, U. (2019). Decentralizing air traffic flow management with blockchain-based reinforcement learning. Aalto University, Finland.
Ethernodes. https://ethernodes.org/network/1. Accessed June 30, 2019.
Ferrer, E.C. (2017). The blockchain: A new framework for robotic swarm systems. arXiv:1608.00695 [cs.RO].
Ferrer, E.C., Hardjono, T., Dorigo, M. & Pentland, A. (2019). Secure and secret cooperation of robotic swarms by using Merkle trees. arXiv:1904.09266 [cs.RO].
Feynman, R.P. (1970). The Feynman Lectures on Physics. Vol I. London, UK: Pearson PTR.
Georgi, H. (1993). Effective field theory. Annu. Rev. Nucl. Part. Sci. 43:209–52.
Gibbs, J.W. (1902). Elementary Principles in Statistical Mechanics. New York, NY: Scribner.
Giorgi, G.A, Guerraggio A. & Thierfelder J. (2004). Mathematics of Optimization: Smooth and Nonsmooth Case. London, UK: Elsevier.
Hammi, B., Khatoun, R., Zeadally, S. et al. (2017). Internet of Things (IoT) technologies for smart cities. IET Networks. 7.
Jaffe, A & Witten, E. (2001). Quantum Yang–Mills Theory, 1–14. https://www.claymath.org/sites/default/files/yangmills.pdf. Accessed June 30, 2019.
Kalinin, K.P. & Berloff, N.G. (2018). Blockchain platform with proof-of-work based on analog Hamiltonian optimisers. arXiv:1802.10091 [quant-ph].
Kokar, M.M., Baclawski, K. & Eracar, Y.A. (1999). Control theory-based foundations of self-controlling software. IEEE Intell. Syst. App. 14(3):37–45.
Manohar, A.V. (2017). Introduction to effective field theories. EFT (Particle Physics and Cosmology) July 3–28, 1–94.
Martins, N.R.B., Angelica, A., Chakravarthy, K. et al. (2019). Human brain/cloud interface. Front. Neurosci. 13:112.
Mayants, L. (1984). The Enigma of Probability and Physics. New York, NY: Springer.
Mitchell, M. (2009). Complexity: A Guided Tour. Oxford, UK: Oxford University Press.
Pieroni, A., Scarpato, N., Di Nunzio, L. et al. (2018). Smarter city: smart energy grid based on blockchain technology. Intl. J. Adv. Sci. Eng. Info. Tech. 8(1):298–306.
SAE (2018). SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles. SAE.
Sayedi, A. (2018). Real-time bidding in online display advertising. Market. Sci. 37(4):553–68.
Singh, S., Lu, S., Kokar, M.M. & Kogut, P.A. (2017). Detection and classification of emergent behaviors using multi-agent simulation framework (WIP). Spring 2017 Simulation Multi-Conference (SCS).
Swan, M. (2015). Blockchain: Blueprint for a New Economy. Sebastopol, CA: O’Reilly Media.
Swan, M. (2016). The future of brain-computer interfaces: Blockchaining your way into a cloudmind. JET. 26(2).
Swan, M. (2018). Blockchain for business: Next-generation enterprise artificial intelligence systems. In: Raj, P., Deka, G.C. (eds). Advances in Computers, Vol. 111. Blockchain Technology: Platforms, Tools and Use Cases. London, UK: Elsevier.
Swan, M. (forthcoming). Technophysics, Smart health networks, and the biocryptoeconomy. In: Boehm, F. (ed). Nanotechnology, Nanomedicine, and AI: Toward the Dream of Global Health Care Equivalency. Boca Raton, FL: CRC Press.
Tasca, P. & Tessone, C.J. (2019). A taxonomy of blockchain technologies: Principles of identification and classification. Ledger 4.
Vasarhelyi, G., Viragh, C., Somorjai, G. et al. (2018). Optimized flocking of autonomous drones in confined environments. Sci. Robot. 3(20):eaat3536.
Wheeler, J.A. (1983). On recognizing ‘law without law.’ Oersted Medal Response at the joint APS-AAPT Meeting, New York, 25 January 1983. Am. J. Phys. 51(5):398–406.
Williams, M. (2017). Effective Theory, Motifs in Physics Series. Harvard University, pp. 1–6.
Woerner, K., Benjamin, M.R., Novitzky, M. & Leonard, J.J. (2019). Quantifying protocol evaluation for autonomous collision avoidance. Auton. Robots. 43(4):967–91.
Chapter 3
Quantum Computing: Basic Concepts
… it seems that the laws of physics present no barrier to reducing the size of computers until bits are the size of atoms, and quantum behavior holds sway
— Richard P. Feynman (1985)
Abstract
Quantum computing is a research frontier in physical science with a focus on developing information