Quantum Computing. Melanie Swan
Чтение книги онлайн.
Читать онлайн книгу Quantum Computing - Melanie Swan страница 24
Feynman, R.P. (1960). There’s plenty of room at the bottom. Eng. Sci. 23(5):22–36.
Feynman, R.P. (1982). Simulating physics with computers. Int. J. Theor. Phys. 21(6):467–88.
Freedman, M.H., Kitaev, A., Larsen, M.J. & Wang, Z. (2002). Topological quantum computation. arXiv:quant-ph/0101025.
Gasman, L. (2019). Quantum key distribution (QKD) markets: 2019 to 2028. Inside Quantum Technology Report.
Gidney, C. & Ekera, M. (2019). How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. arXiv:1905.09749 [quant-ph].
Grumbling, E. & Horowitz, M. (2019). Quantum Computing: Progress and Prospects. Washington, DC: US National Academies of Sciences.
Haque, A. & Sumaiya, S. (2017). An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation. J. Manuf. Mater. Process. 1(1):6.
Jack, B., Xie, Y., Li, J. et al. (2019). Observation of a Majorana zero mode in a topologically protected edge channel. Science 364(6447):1255–59.
Kadowaki, T. & Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Phys. Rev. E. 58(5355).
Kaminsky, W.M. & Lloyd, S. (2004). Scalable architecture for adiabatic quantum computing of Np-hard problems. In: Leggett A.J., Ruggiero B. & Silvestrini P. (Eds). Quantum Computing and Quantum Bits in Mesoscopic Systems. Boston, MA: Springer.
Kloeffel, C. & Loss, D. (2013). Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Conden. Matt. Phys. 4:51–81.
Levine, H., Keesling, A., Omran, A. et al. (2018). High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121(123603).
Los Alamos National Laboratory (LANL). (2004). A Quantum Information Science and Technology Roadmap. LA-UR-04-1778.
Loss, D. & DiVincenzo, D.P. (1998). Quantum computation with quantum dots. Phys. Rev. A. 57(1):120–26.
Mavroeidis, V., Vishi, K., Zych, M.D. & Josang, A. (2018). The impact of quantum computing on present cryptography. Int. J. Adv. Comp. Sci. App. 9(3):1–10.
McMahon, P. (2018). Quantum Computing Hardware Landscape. San Jose, CA: QC Ware.
Mosca, M. (2018). Cybersecurity in an era with quantum computers: will we be ready? IEEE Secur. Priv. 16(5):38–41.
Murali, P., Linke, M. & Martonosi, M. (2019). Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights. International Symposium on Computer Architecture (ISCA), 2019, pp. 1–14.
Petta, J.R., Johnson, A.C., Taylor, J.M. et al. (2005). Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744): 2180–84.
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum 2(79):1–20.
Procopio, L.M., Moqanaki, A., Araujo, M. et al. (2015). Experimental superposition of orders of quantum gates. Nat. Commun. 6(7913):1–6.
Rigetti, C., Poletto, S., Gambetta, J.M. et al. (2012). Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms. Phys. Rev. B. 86:100506(R).
Robinson, N.J., Altland, A., Egger, R. et al. (2019). Nontopological Majorana zero modes in inhomogeneous spin ladders. Phys. Rev. Lett. 122(2):027201.
Rudolph, T. (2016). Why I am optimistic about the silicon-photonic route to quantum computing. arXiv:1607.08535 [quant-ph].
Saffman, M. (2016). Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B: Atom. Mol. Opt. Phys. 49(202001):1–27.
Sarma, S.D., Freedman, M. & Nayak, C. (2015). Majorana zero modes and topological quantum computation. NPJ Quantum Inf. 1(15001).
Somayazulu, M., Ahart, M., Mishra, A.K. et al. (2019). Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122(027001).
Steane, A. (1997). Quantum computing. arXiv:quant-ph/9708022.
Vandersypen, L.M.K., Steffen, M., Breyta, G. et al. (2001). Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883–7.
Villalonga, B., Boixo, S. & Nelson, B. (2019). A flexible high-performance simulator for the verification and benchmarking of quantum circuits implemented on real hardware. arXiv:1811.09599 [quant-ph].
Wang, Z. (2010). Topological Quantum Computation. Providence, RI: American Mathematical Society.
Williams, C.J. (2007). Quantum Information Science, NIST, and Future Technological Implications. Gaithersburg, MD: National Institute of Standards and Technology.
Zurek, E. (2019). Viewpoint: pushing towards room-temperature superconductivity. APS Phys. 12(1).
Chapter 4
Advanced Quantum Computing: Interference and Entanglement
Abstract
The special properties of quantum objects (atoms, ions, and photons) are superposition, interference, and entanglement. Superposition refers to particles existing across all possible states simultaneously. Interference is the situation where intervention from noise in the environment damages the quantum object, and also the possibility that the wave functions of particles can either reinforce or diminish each other. Entanglement means that groups of particles are connected and can interact in ways such that the quantum state of each particle cannot be described independently of the state of the others even when the particles are separated by a large distance. One of the most important implications of entanglement is that qubits can be error-corrected, which will likely be necessary for the advent of universal quantum computing. An application of quantum computing that is already available is certifiably random bits, a proven source of randomness, which is used in secure cryptography.
4.1Introduction
One surprise is that there may be many more useful short-term applications of quantum computing with currently available NISQ devices than has been thought possible without full-blown universal quantum computers. NISQ devices are noisy intermediate-scale quantum devices (Preskill, 2018). For example, even near-term quantum computing devices may allow computations as elaborate as the simulation of quantum field theories (Jordan et al., 2012).
4.1.1 Quantum statistics
Quantum superposition, entanglement, and interference (SEI) properties come together in the discipline of quantum statistics. Quantum phenomena have a signature. They produce certain kinds of recognizable quantum statistical distributions that could only have come from quantum