Aristotle: The Complete Works. Aristotle
Чтение книги онлайн.
Читать онлайн книгу Aristotle: The Complete Works - Aristotle страница 169
Now the medium causes a difference because it impedes the moving thing, most of all if it is moving in the opposite direction, but in a secondary degree even if it is at rest; and especially a medium that is not easily divided, i.e. a medium that is somewhat dense. A, then, will move through B in time G, and through D, which is thinner, in time E (if the length of B is egual to D), in proportion to the density of the hindering body. For let B be water and D air; then by so much as air is thinner and more incorporeal than water, A will move through D faster than through B. Let the speed have the same ratio to the speed, then, that air has to water. Then if air is twice as thin, the body will traverse B in twice the time that it does D, and the time G will be twice the time E. And always, by so much as the medium is more incorporeal and less resistant and more easily divided, the faster will be the movement.
Now there is no ratio in which the void is exceeded by body, as there is no ratio of 0 to a number. For if 4 exceeds 3 by 1, and 2 by more than 1, and 1 by still more than it exceeds 2, still there is no ratio by which it exceeds 0; for that which exceeds must be divisible into the excess + that which is exceeded, so that will be what it exceeds 0 by + 0. For this reason, too, a line does not exceed a point unless it is composed of points! Similarly the void can bear no ratio to the full, and therefore neither can movement through the one to movement through the other, but if a thing moves through the thickest medium such and such a distance in such and such a time, it moves through the void with a speed beyond any ratio. For let Z be void, equal in magnitude to B and to D. Then if A is to traverse and move through it in a certain time, H, a time less than E, however, the void will bear this ratio to the full. But in a time equal to H, A will traverse the part O of A. And it will surely also traverse in that time any substance Z which exceeds air in thickness in the ratio which the time E bears to the time H. For if the body Z be as much thinner than D as E exceeds H, A, if it moves through Z, will traverse it in a time inverse to the speed of the movement, i.e. in a time equal to H. If, then, there is no body in Z, A will traverse Z still more quickly. But we supposed that its traverse of Z when Z was void occupied the time H. So that it will traverse Z in an equal time whether Z be full or void. But this is impossible. It is plain, then, that if there is a time in which it will move through any part of the void, this impossible result will follow: it will be found to traverse a certain distance, whether this be full or void, in an equal time; for there will be some body which is in the same ratio to the other body as the time is to the time.
To sum the matter up, the cause of this result is obvious, viz. that between any two movements there is a ratio (for they occupy time, and there is a ratio between any two times, so long as both are finite), but there is no ratio of void to full.
These are the consequences that result from a difference in the media; the following depend upon an excess of one moving body over another. We see that bodies which have a greater impulse either of weight or of lightness, if they are alike in other respects, move faster over an equal space, and in the ratio which their magnitudes bear to each other. Therefore they will also move through the void with this ratio of speed. But that is impossible; for why should one move faster? (In moving through plena it must be so; for the greater divides them faster by its force. For a moving thing cleaves the medium either by its shape, or by the impulse which the body that is carried along or is projected possesses.) Therefore all will possess equal velocity. But this is impossible.
It is evident from what has been said, then, that, if there is a void, a result follows which is the very opposite of the reason for which those who believe in a void set it up. They think that if movement in respect of place is to exist, the void cannot exist, separated all by itself; but this is the same as to say that place is a separate cavity; and this has already been stated to be impossible.
But even if we consider it on its own merits the so-called vacuum will be found to be really vacuous. For as, if one puts a cube in water, an amount of water equal to the cube will be displaced; so too in air; but the effect is imperceptible to sense. And indeed always in the case of any body that can be displaced, must, if it is not compressed, be displaced in the direction in which it is its nature to be displaced-always either down, if its locomotion is downwards as in the case of earth, or up, if it is fire, or in both directions-whatever be the nature of the inserted body. Now in the void this is impossible; for it is not body; the void must have penetrated the cube to a distance equal to that which this portion of void formerly occupied in the void, just as if the water or air had not been displaced by the wooden cube, but had penetrated right through it.
But the cube also has a magnitude equal to that occupied by the void; a magnitude which, if it is also hot or cold, or heavy or light, is none the less different in essence from all its attributes, even if it is not separable from them; I mean the volume of the wooden cube. So that even if it were separated from everything else and were neither heavy nor light, it will occupy an equal amount of void, and fill the same place, as the part of place or of the void equal to itself. How then will the body of the cube differ from the void or place that is equal to it? And if there can be two such things, why cannot there be any number coinciding?
This, then, is one absurd and impossible implication of the theory. It is also evident that the cube will have this same volume even if it is displaced, which is an attribute possessed by all other bodies also. Therefore if this differs in no respect from its place, why need we assume a place for bodies over and above the volume of each, if their volume be conceived of as free from attributes? It contributes nothing to the situation if there is an equal interval attached to it as well. [Further it ought to be clear by the study of moving things what sort of thing void is. But in fact it is found nowhere in the world. For air is something, though it does not seem to be so-nor, for that matter, would water, if fishes were made of iron; for the discrimination of the tangible is by touch.]
It is clear, then, from these considerations that there is no separate void.
<
div id="section35" class="section" title="9">
9
There are some who think that the existence of rarity and density shows that there is a void. If rarity and density do not exist, they say, neither can things contract and be compressed. But if this were not to take place, either there would be no movement at all, or the universe would bulge, as Xuthus said, or air and water must always change into equal amounts (e.g. if air has been made out of a cupful of water, at the same time out of an equal amount of air a cupful of water must have been made), or void must necessarily exist; for compression and expansion cannot take place otherwise.
Now, if they mean by the rare that which has many voids existing separately, it is plain that if void cannot exist separate any more than a place can exist with an extension all to itself, neither can the rare exist in this sense. But if they mean that there is void, not separately existent, but still present in the rare, this is less impossible, yet, first, the void turns out not to be a condition of all movement, but only of movement upwards (for the rare is light, which is the reason why they say fire is rare); second, the void turns out to be a condition of movement not as that in which it takes place, but in that the void carries things up as skins by being carried up themselves carry up what is continuous with them. Yet how can void have a local movement or a place? For thus that into which void moves is till then void of a void.
Again, how will they explain, in the case of what is heavy, its movement downwards? And it is plain that if the rarer and more void a thing is the quicker it will move upwards, if it were completely void it would move with a maximum speed! But perhaps even this is impossible, that it should move at all; the same reason which showed that in the void all things are incapable of moving shows that the void cannot move, viz. the fact that the speeds are incomparable.