Geochemistry and the Biosphere. Vladimir I. Vernadsky
Чтение книги онлайн.
Читать онлайн книгу Geochemistry and the Biosphere - Vladimir I. Vernadsky страница 5
A good example of the problems of editing a translation by a nonnative English speaker is the use of the articles “a,” “an,” and “the.” These articles do not exist in Russian, so a Russian translator translating into English must insert them where needed – a very difficult task. Hence, I considered them “fair game” – to add or delete as seemed appropriate to my ear. The rules for placement of the articles in English are tricky to say the least. Although such rules do exist, they are not easy to apply. Yet a native speaker whose ear is attuned to the language seldom uses them improperly. In my editing of this translation, I must have removed a few hundred definite articles (“the”), mostly before plural words (e.g., solar rays) or compound nouns (e.g., green living matter). I also had to add quite a few definite and indefinite articles when it seemed appropriate. I apologize if these additions or deletions were not always what they should have been.
Having just read the page proofs (my fourth time through!), I continue to be deeply impressed with the two volumes, especially for two reasons. I am still amazed by what was known by the first third of the twentieth century. Most of the important geochemical and ecological themes being discussed now are foreshadowed in these volumes. One example: I thought that perhaps Vernadsky’s time had not been aware of the potential problems, particularly global warming, posed by the rapid increase in carbon dioxide thanks to burning of fossil fuels. But there it is on pages 189-190 where Vernadsky considers the views of Arrhenius.
The breadth of Vernadsky’s knowledge of the literature of geology, geochemistry, the biosphere, the kinds of living organisms, and many other topics is simply mind boggling. I began to wonder: Could anyone alive today duplicate Vernadsky’s feat, but this time incorporating all the information that has been added to and expanded upon what was known in his time?
This work has been enjoyable as well as challenging, and it was made possible by Deborah Parrish Snyder of Synergetic Press. She has been a wonderful help and a joy to work with.
Frank B. Salisbury
Professor Emeritus of Plant Physiology
Utah State University, Salt Lake City
Vernadsky, Moscow 1940
introduction
The purpose of this introduction is to familiarize the reader with the powerful historic figure of Vladimir Ivanovich Vernadsky (1863–1945) as a great scientist and thinker of the twentieth century. The scope of his genius can be fully comprehended only through acquaintance with all his creative work in the fields of natural science, biology, and philosophy, which by far exceeds the common idea of Vernadsky as a geochemist, mineralogist, and geologist.
Vernadsky’s teachings on the biosphere and noösphere belong to science, just as Darwin’s theory of the evolution of species, Bohr’s fundamentals of quantum physics, and Einstein’s relativity theory. That is why this edition is a homage to the history of fundamental scientific ideas to which the teaching of the biosphere clearly belongs. Vernadsky was the founder of genetic mineralogy, geochemistry, biogeochemistry (the concept of “living matter” as a geological force), the theory of the biosphere, radiogeology, and hydrogeology. His ideas gave birth to many scientific disciplines. By force of logic and generalization he anticipated the ideas of unity of time and space, of the physical vacuum and of the asymmetry of space. His ideas of the “local” features of sections of the world’s ocean, occupied by living organisms or growing crystals, have not yet been fully understood and developed in terms of present-day physics. Long before World War II, Vernadsky had written about the potential use of atomic energy for military purposes and, in this connection, about the great responsibility of scientists, though physicists had not even thought about creating an atom bomb. Such was the scope of his thought and vision.
Vernadsky’s teachings not only prepare the ground for planetary thinking, but also exemplify a full-scale understanding of the unity of the planet’s living and non-living nature and the unity of the planet with its cosmic environment. This unity is the gist of Vernadsky’s teachings.
V. I. Vernadsky is undoubtedly a great and rare phenomenon in the history of natural science. Such powerful figures do not emerge every century. This is the way I see him, and this is the way I would like to introduce him to the English-speaking reader.
vernadsky’s life
Vernadsky, St. Petersburg, 1875
The future scientist and Academician Vladimir Ivanovich Vernadsky was born in St. Petersburg into a nobleman family with ancient historic roots in the Ukraine. In his early years, he was an ordinary boy, a bit phlegmatic and shy, and manifested no signs of genius. From early childhood, he was keen on reading. No one in the family controlled his reading, and he used his father’s large library to his heart’s content. At age twenty-three, he recollected in one of his letters:
I threw myself at books early and read voraciously everything I came across, constantly digging in my father’s library…. From these early years, I especially remember various books on geography, not only about travels but also rather dry books that seemed difficult for my age, for instance, The Earth by E. Reclus…. At the same time, I was fond of books on history, especially Greek.
And then, speaking about his High School years:
I was deeply interested in the history of the Church…. My home life gave me the main thing: dozens of journals, Russian and foreign, that my father subscribed to.
Vernadsky’s father was a professor of political economy, which seems very far from geological sciences. But political economy compares human needs with natural conditions; from here, it is not far to Vernadsky’s subsequent understanding of nature and man’s place in it. As a young man, Vernadsky wanted to take up history but decided first to get an education in natural science. In 1885, Vladimir Ivanovich graduated from the natural science department of the faculty of Mathematics and Physics of St. Petersburg University, and continued at the faculty to prepare for a professor’s degree.
Vernadsky studied at St. Petersburg University when it was in its heyday: a brilliant constellation of scientists gathered there; they created an era not only in Russian but also in world science. His teachers were the chemists Mendeleyev, Butlerov, and Menshutkin, the soil scientists Dokuchaev and Kostychev, the geologist Inostrantsev, the geographer and meteorologist Voyeikov, and other famous scientists of that time. Each of them made a great contribution to twentieth-century science. The first among them was D. I. Mendeleyev. I do not need to introduce the creator of the Periodic Law and the Periodic Table of the Elements, which are studied in every school. The ideas of Mendeleyev, and especially those of the soil scientist Dokuchaev, greatly influenced Vernadsky’s later scientific work.
Having received a geological education, Vernadsky first took up crystallography and mineralogy at St. Petersburg University. After moving to Moscow, he delivered lectures in mineralogy at Moscow University, at the chair of a famous geologist and subsequent Academician of his time, A. P. Pavlov, who was one of Vernadsky’s teachers whose name we shall come across below.
During his student years and his work at Moscow University, Vernadsky took part in Dokuchaev’s expeditions, studying soil chemistry in different regions of Russia. It is easy to understand that the science created by Vernadsky – geochemistry – turned out as “genetic” as Dokuchaev’s soil science. It embraced not only the distribution and