Design and the Digital Divide. Alan F. Newell

Чтение книги онлайн.

Читать онлайн книгу Design and the Digital Divide - Alan F. Newell страница 11

Design and the Digital Divide - Alan F. Newell Synthesis Lectures on Assistive, Rehabilitative, and Health-Preserving Technologies

Скачать книгу

relatively simple electronic circuits within a portable system. Joe King, an excellent undergraduate student, produced the first prototype [Newell and King, 1977b] with assistance and loan of equipment from NPL. We had invaluable and enormous help throughout all our Palantype transcription projects from Miss Isla Beard from the Palantype Organisation. She acted as an expert consultant and demonstration operator throughout our research, and was also Jack Ashley’s personal Palantypist for many years.

      Following demonstrations of King’s system, we obtained a commission to develop a system for the House of Commons and also won research grants to develop the ideas further. A prototype was demonstrated to Jack Ashley and the Chief Whip, and the House agreed to purchase a system [Ashley, J., 1992]. A second system was designed and built by my colleagues, Andrew Downton and John Arnott, and subjected to a six-month trial in the House of Commons. This prototype, shown in Figure 2.6, used a plasma panel display mounted in a specially designed brief case. As can be seen in Figure 2.6(c), the output from this device is a simple code conversion and is syllabic and quasi-phonetic. Nevertheless, Jack Ashley was able to read this style of text after only a few hours training.

      One of the technical challenges for a display of verbatim speech is what to do when the text filled the whole screen. The normal approach would be to move all the text up one line and write new data into the bottom line. This sudden jerky change, however, can disorientate the reader. Smooth scrolling was a possibility, but the speed of motion would be variable, and commercially available display systems did not offer such a facility. In addition, if the text moved up vertically, a reader who looked away from the screen could find it difficult to return to where they were reading. Leaving the text on the screen and writing over it from the top also proved confusing in practice. It was thus decided to modify the display by providing a “moving blank” of two lines situated immediately in front of any new data. This, together with a cursor, gave an unambiguous and clear indication of how to read the display at any moment in time.

      The use of such a system within the Chamber of the House of Commons presented many political challenges. Objections raised included that:

      • “Ashley would be at an advantage, therefore all MPs should have one”,

      • “He would have to have a seat assigned to him which was against the rules of the House” (Although woe betide any new member who took an established member’s favorite seat. I also found that seats could be booked by inserting a card in them, before “prayers”),

image

      Figure 2.6: (a) & (b) First version of Palantype Transcription System; (c) output screen from Transcription System.

      • “There would need modifications to the oak bench in the foreign press gallery” (where the Palantypist was to be situated).

      As a non-MP, I had to obtain special permission from the Sergeant at Arms himself to sit on one of the “green benches” to try the system out, even though the House was not sitting at the time. At the Press Conference to launch the trial, it was commented that this was an historic day as “it was the first time in history that a member had had a specific seat assigned to him!”.

      We finally overcame all the objections and following a training period of approximately 20 hours, Ashley was able to follow all but the fastest speakers. The trial was a success and the service, with gradually improved systems, was continued for all Jack’s subsequent career as an MP, both in the Chamber, in Committee and at one-to-one meetings. Ashley [1992] claimed that “It was a turning point in my life as an MP”. A later system, shown in Figure 2.7(a), had a microprocessor and 20 kilobytes of storage [Newell and Downton, 1979c]. The output of this machine, shown in Figure 2.7(b) (which includes the effects of operator keying errors), was adequate for deaf people, but the commercial court reporting field had to wait until portable technology could support systems with large dictionaries.

image

      Figure 2.7: (a) The Rt. Hon. Jack (now Lord) Ashley using a computerized Palantype Transcription System; (b) the output screen of the Transcription System.

      POSSUM Controls were licensed to produce the systems. The transfer of this technology was substantially assisted by Colin Brookes, a research student/assistant at the University, transferring to POSSUM Controls to manage their developments. The commercialization provided many challenges, as machine shorthand was not popular in the UK. Palantype machines had not been produced for many years, and there were no training schemes. Thus, not only did POSSUM have to re-design the Palantype machine itself, but also had to develop and market training courses for Palantypists. In the U.S., machine shorthand is very popular and thus all that was required was to develop electrical output for machines and transcription software. POSSUM systems were used in the UK in a variety of situations including by a deaf business man, many conferences, a telephone translation service for deaf people, and for live TV subtitling. The transcription software was improved and became adequate for commercial requires a high-quality output, because, if the recognition rate is less than 95%, it takes less time to re-type the script than to edit it.

      Even with this improved system, POSSUM found it difficult to break into the Court Market. The Lord Chancellor’s Office (who is in charge of Court Reporting in the UK) did not support this development. Officials believed that Tape Recordings and, eventually Automatic Speech Recognition, were the solution [Baker, 1966]. Tape recordings were introduced, but found to be more costly, less reliable, and not to capture important visual information (e.g., the witness pointed at the person in the dock). Their shortcomings were fully documented by Osmond’s [1972] report of the Lord Chancellor’s working party. POSSUM also found it difficult to persuade the Lord Chancellor’s Office that a simultaneous transcript would be valuable (e.g., so that court officials could read it overnight). This was solved after a demonstration of the system to judges, who immediately saw the benefits. In later years speech recognition has been used in the U.S., but requires a trained speaker to re-speak the words uttered in Court.

       Following fashion—even in research—may produce incremental advances. Swimming against the tide can lead to major advances.

      With funding from the National Research and Development Corporation (which became the British Technology Group), Palantype transcription systems were licensed to, and made commercially available by, POSSUM Controls Ltd. They also organized operator training. They offered transcription as a service to deaf people in a range of situations, including meetings, conferences, in a pilot telephone translation service and by a deaf business man [Hayward, G., 1979]. As technology improved, these systems incorporated very large dictionaries, and similar portable systems were developed in the U.S. for Stenograph machines.

      Rapid reading of orthographic text requires good literacy, and thus can be difficult for pre-lingually profoundly deaf people, for whom a sign language translator is more effective, but both require a trained operator. The advantages of an orthographic output are:

      • the words remain on the screen for a short time after they have been spoken, and thus the reader can briefly look away from the screen without missing words;

      • orthographic output can be used

Скачать книгу