Qualitative HCI Research. Ann Blandford

Чтение книги онлайн.

Читать онлайн книгу Qualitative HCI Research - Ann Blandford страница 8

Qualitative HCI Research - Ann Blandford Synthesis Lectures on Human-Centered Informatics

Скачать книгу

stages of the project (including literature review and writing up) are taken into account. It is therefore important that the data should be as high quality as possible.

      As well as time, resource considerations need to cover funding, equipment available for data collection and analysis, availability of places to conduct the study, availability of participants and expertise. Here, we briefly discuss some of these issues, while avoiding stating the obvious (variants on the theme of “don’t plan to use resources that you don’t have or can’t acquire!”).

      Where a study takes place can shape that study significantly. Studies that take place within the context of work, home or other natural setting are sometimes referred to as “situated” or “in the wild” (e.g., Rogers, 2012). Studies that take place in more controlled settings include laboratory studies (e.g., involving think-aloud protocol) and some interview studies. There are also intermediate points, such as the use of simulation labs, or the use of spaces that are similar to the work setting, where participants have access to some, but not all, features of the natural work setting. Observational studies most commonly take place “in the wild,” where the “wild” may be a workplace, the home, or some other location where the technology of interest is used. Interview studies may take place in the “wild” or in another place that is comfortable for participants, and quiet enough to record and to ensure appropriate privacy and safety for both participant and interviewer. Of course, there are also study types where researcher and participant are at a distance from each other, such as diary studies and remote interviews.

      Tools for data recording include notes, audio recording, still camera, video camera and screen capture software. All of these can be useful, depending on the situations and purpose for which data is being gathered.

      Hand-written or typed notes can be most effective in noisy environments, or where there are sensitivities about any other form of recording. Care needs to be taken that the act of note-taking does not disrupt the interaction. For example, if particular actions are noted in an observation session, participants may be aware of every time a note is taken, and hence self-conscious about the activity that is provoking the note-taking (Blandford et al., 2015a).

      Audio recording is often most suitable for interviews and focus groups. If you are working on your own it might be difficult to follow and facilitate the interview and note down all the important points otherwise. Audio recording and transcription is also needed where the details of specific words and phrases people use are important. Audio recordings are preferable to note-taking particularly when the study is exploratory and there is a chance that information that might be overlooked early on turns out to be important later, or if the data is rich enough to support multiple analyses. For example, Rajkomar et al. (2015) originally gathered data on people’s situated use of home haemodialysis technology in order to test and extend the DiCoT approach (Furniss and Blandford, 2006) to analysing a system in terms of Distributed Cognition (DCog: Hollan et al., 2000). Within the initial interview plan, we intentionally also addressed questions of basic usability and how people stay safe on home haemodialysis (Rajkomar et al., 2014). Another unanticipated theme within the data was how people cope with managing their own dialysis at home including, but not limited to, how they troubleshoot when the technology goes wrong (Blandford et al., 2015b). It would not have been possible for us to do this follow-up Thematic Analysis without full audio transcriptions of the interviews.

      Still photographs of activities performed and equipment/technology used provide a permanent record to support analysis and for illustrative purposes in reports. This can be particularly useful when the equipment has been adapted by users, or for recording where technology was used or how it was configured. For example, Figure 2.4 shows a series of photos of glucometers used in a hospital that supported analysis of the system in terms of DCog (Furniss et al., 2015).

      Figure 2.4: Glucometer use in a hospital. The same device is shown stand-alone (left), as part of a blood glucose testing kit (middle) and as part of a broader blood glucose testing system (right).

      Video recording can be valuable for capturing the details of an interaction, but can be intrusive. Recording video can be particularly useful for capturing micro-interactions and interaction that involves the use of equipment or technology in a particular physical space (e.g., in a family car—see Cycil et al., 2014) or involves multiple users interacting with technology (see Marshall et al., 2011).

      Screen capture software can give a valuable record of user interactions with desktop systems. For capturing rarely performed interactions, or interactions over an extended time period (e.g., how a document is written over a period of days or weeks), it may be possible to ask participants to record their own screens or to take screenshots (e.g., Karlson et al., 2010).

      Particular qualitative methods may require specialist equipment for data gathering. Examples include the use of cultural probes (Gaver and Dunne, 1999), which involve participants receiving a set of tools such as cameras, notebooks, pens and sticky notes with which to record their experiences, or engaging participants in keeping video diaries. Other specialist tools may sometimes add value; for example, eye gaze tracking, motion capture or activity tracking may add useful quantitative data to complement the qualitative in some studies (see discussion of mixed methods in Chapter 6).

      When it comes to data analysis, colored pencils, highlighter pens and paper are often adequate for studies that involve only a few hours of data. For larger studies, computer-based Qualitative Data Analysis tools (e.g., NVivo, MaxQDA, Dedoose or ATLAS.ti) can help with managing and keeping track of data, but require time to learn to use effectively. These tools can help track large quantities of quotations, codes, links and memos. They can also speed up the process of analysis; for example, they allow you to rapidly change the name of every instance of a particular code, or list every quotation with a particular code. However, they do not actually do any of the sense making themselves—that is left to the researcher.

      As well as the costs of equipment, the other main costs for studies are typically the costs of travel and participant fees. Within HCI, there has been little discussion around the ethics and practicality of paying participant fees for studies. In disciplines where this has been studied (most notably medicine), there is little agreement on policy for paying participants (e.g., Grady et al., 2005; Fry et al., 2005). The ethical concerns in medicine are typically much greater than those in HCI due to the level of potential harm. In HCI, it is common practice to recompense participants for their time and any costs they incur, with cash or gift certificates, without making the payment so large that people are likely to participate just for the money.

      Often, the biggest constraint is access to a study setting or availability of suitable participants; we devote the next chapter to this topic.

      Traditionally, ethics has been concerned with the avoidance of harm, and most established ethical clearance processes focus on this. “VIP” is a useful mnemonic for the main considerations:

      • Vulnerable participants

      • Informed consent

      • Privacy and confidentiality

      Particular care needs to be taken when recruiting participants from groups that might be regarded as vulnerable, such as children, the elderly or people with a particular condition (illness, addiction, etc.).

      In providing informed consent, participants should

Скачать книгу