Mauve. Simon Garfield

Чтение книги онлайн.

Читать онлайн книгу Mauve - Simon Garfield страница 10

Mauve - Simon  Garfield Canons

Скачать книгу

your discovery does not make the goods too expensive it is decidedly one of the most valuable that has come out for a very long time. This colour is one which has been very much wanted in all classes of goods and could not be had fast on silk and only at great expense on cotton yarns. I inclose you patterns of the best lilac we have on cotton. It is done by only one house in the United Kingdom, Andrews of Manchester, and they get any price they wish for it, but even it is not quite fast, it does not stand the tests that yours does and fades by exposure to air.’

      Pullar was twenty-eight, and was later described by a general manager of his company as possessing ‘a mind always looking forward for something new and better’. His large dye works in Mill Street, Perth, had recently received a royal warrant, and now advertised itself proudly as silk dyemakers to the Queen. Robert Pullar liked to quote Faraday: ‘Without experiment I am nothing; still try, for who knows what is possible.’ Perkin had been lucky in his choice of adviser; he was to discover later that not all dyers or printers were as progressive or encouraging.

      Pullar explained to Perkin that he could not put a price on the colour, not until he had tested it himself in a dyeing vat. ‘If the quantity of yarn or cloth that could be soaked in one gallon of your liquor would take up all the colouring matter in that gallon, then I would say that the price would be much too great . . .’ If this happened, the dyestuff required to colour one pound of silk or cotton would cost about five shillings – ‘far too much for a manufacturer to pay’.

      Pullar offered to help Perkin in any way he could, and regretted that he did not live nearer London to meet him in person. ‘We are always very desirous here to have every thing new, as we do a large trade in manufacturing and a new colour in the goods is of great importance.’

      Perkin showed this letter to Arthur Church, who encouraged him to take out a patent immediately. But there was a problem with Perkin’s age, as patents were usually only granted to those over twenty-one. He sought counsel’s opinion, and was advised that since a patent was a gift from the Crown, the matter of age should be immaterial. Perkin filed his application at the end of August 1856, when he was eighteen. But then he began to wonder: what good would it do him? Just how much was a new colour worth?

      New colours had been discovered by chance since ancient times, and some magnificent myths had evolved. A sheep dog belonging to Hercules, while walking along a beach in Tyre, bit into a mollusc which turned his mouth the colour of coagulated blood. This became known as Royal or Tyrian purple. It brought prosperity to Tyre around 1500 BC, and for centuries remained the most exclusive animal dye money could buy. It was the colour of high achievement and ostentatious wealth, and came to symbolise sovereignty and the highest offices of the legal system. Within Jewish practice, the dye was used on the fringes of prayer shawls; in the army, the wearing of purple woollen strips was used to denote rank. Purple was also the colour of Cleopatra’s barge, and Julius Caesar decreed that the colour could be worn only by the emperor and his household.

      It was prohibitively expensive. The molluscs – Murex brandaris from the Italian coast or Murex trunculus, located first on the Phoenician coast – were drained of their glandular mucus in their thousands to make a single robe. Pliny described how, during autumn and winter, the shellfish were crushed, salted for three days and then boiled for ten. The resultant colour resembled ‘the sea, the air and a clear sky’, suggesting that Tyrian purple defined not one particular shade but a rich spectrum from blue to black. The dying process varied from port to port, and might have water or honey mixed in to achieve different hues.

      Of the other animal dyes the most popular was cochineal, the crimson dye from cactus insects. Introduced into Europe by the Spanish from Mexico (then New Spain) in the sixteenth century, it was widely used as cloth dye, artists’ pigment, and much later a food colorant, but again required a huge seasonal harvest – about 17,000 dried insects for a single ounce of dye. What may have been the first English dye house was established for cochineal in Bow, east London, in 1643, and the scarlet became known as Bow-Dye and was described in terms of bruised flesh.

      Vegetable dyes tended to be cheaper, and in greater supply. In Perkin’s day the most common were madder and indigo, the ancient red and blue dyes used for cloth and cosmetics. Madder, from the roots of some 35 species of plant found in Europe and Asia, has been found in the cloth of mummies and is mentioned by Herodotus, and is probably the first dye to be used as camouflage – Alexander the Great spattering his army with red to persuade the Persians that they had been critically wounded in earlier battle. In ‘The Former Age’, c.1374, Chaucer depicts the idea of man’s early innocence when

      No mader, welde, or wood [woad] no litestere [dyer]

      Ne Knew; the flees [fleece] was of his former hewe.

      Indigo, used not only as dye and pigment but also an astringent lotion, derived from the leaf of Indigofera tinctoria, a shrublike plant that was soaked in water and then beaten with bamboo to hasten oxidation. During this process the liquid changes colour from dark green to blue, when it is then heated, filtered and formed into a paste. Before the colonisation of America, it came predominantly from India in the form of dye-cakes, and this ancient derivation held firm to the time when Perkin could observe the colour in women’s fashions in the West End.

      There were several other important plant dyes – carthamus, woad, saffron, brazilwood and turmeric – but even these represented an extremely narrow range of colours, confined variously to red, blue, yellow, brown and black. Woad, again known to Pliny and used commonly by ancient Britons as a facial and body dye, contained a similar colouring matter to indigo, although derived from a different plant and containing about one-tenth the tinctorial power.

      Throughout much of the eighteenth century the greatest advances in dyeing technique were made in France, but between 1794 and 1818 an American working in London called Edward Bancroft claimed many significant improvements. Bancroft patented three new natural dyes, including the yellow quercitron, and wrote the first scientific treatise on dyeing in English. His Experimental Researches Concerning the Philosophy of Permanent Colours combined exact chemical observations with personal anecdotes: he noted, for example, how his favourite purple coat hardly faded though he wore it for several weeks. Bancroft had a further claim on posterity, as he was later exposed as a double agent during the American Revolution, working both for the British government and for Benjamin Franklin.

      The process of dyeing cloth had not changed much in centuries, and the most skilled practitioners had passed complex and guarded procedures through generations. But in New York in 1823, William Partridge published A Practical Treatise on Dyeing of Woollen, Cotton and Skein Silk, with the Manufacture of Broadcloths and Cassimeres Including the Most Improved Methods in the West of England, for thirty years the standard text, in which all the most popular dyes were disclosed like magicians’ secrets and presented like cookery recipes. To prepare the fastest blue, for example, you would need an English vat containing ‘five times one hundred and twelve pounds of the best woad, five pounds of umbro madder, one peck of Cornell and bran, the refuse of wheat, four pounds of copperas, and a quarter of a peck of dry slacked lime’.

      There were detailed descriptions of how to prepare the lime, followed by directions to chop the woad into small lumps with a spade, and gradually add other ingredients to water set at 195 degrees Fahrenheit. The instructions ran on for several pages. ‘The vat should be set about four or five o’clock in the afternoon, and be attended and stirred again at nine o’clock the same evening,’ before being cooled. By this stage the result should be bottle-green. The dyer was then directed up again at five in the morning, and told to add more lime or indigo to lighten the colour. Bubbles and skin and increasing thickness would denote a good fermentation, which should then be boiled again and cooled, and boiled and cooled, and more lime added, and then it was time for the wool dipping. This was where matters became complicated. You really needed two vats of woad, one two months old, the other new, and the wool should be dipped in each in turn. The temperatures of the

Скачать книгу