The Runaway Species. David Eagleman
Чтение книги онлайн.
Читать онлайн книгу The Runaway Species - David Eagleman страница 10
In refashioning the world, Apple, NASA engineers, Ford, Coleridge and Picasso all worked from precedent. But at first blush, it might seem that they must have done so in very different ways – after all, remaking electronics, cars, poetry and paintings must surely involve vastly different kinds of mental undertakings. One might be tempted to think that creative minds use a dizzying array of methods for refashioning the world around us. But we propose a framework that divides the landscape of cognitive operations into three basic strategies: bending, breaking and blending.13 We suggest these are the primary means by which all ideas evolve.
In bending, an original is modified or twisted out of shape.
Szotynscy and Zaleski’s Krzywy Domek (‘Warped Building’) in Sopot, a Polish sea resort
In breaking, a whole is taken apart.
Yago Partal’s Defragmentados
In blending, two or more sources are merged.
Thomas Barbèy’s Oh Sheet!
Bending, breaking and blending – the three Bs – are a way of capturing the brain operations that underlie innovative thinking. Alone or in combination, these mental operations allow humans to get from the IBM Simon to an iPhone, or from native artifacts to the birth of modern art. The three Bs brought home Apollo 13 and enabled Ford’s factories. We’ll show how imagination takes flight on the wings of these cognitive mechanisms. By applying this cognitive software to everything around us, we generate an ongoing tidal wave of novel worlds.
These mental operations are basic to the way we view and understand the world. Consider our memory: it’s not like a video recording, faithfully transcribing our experiences; instead, there are distortions, shorthand and blurring together. The inputs that go in aren’t the same ones that come out, which is why we can all witness the same car accident but recall it differently, or participate in the same conversation but have a different telling of it later. Human creativity emerges from this mechanism. We bend, break and blend everything we observe, and these tools allow us to extrapolate far from the reality around us. Humans are terrible at retaining precise, detailed information, but we have just the right design to create alternative worlds.
We’ve all seen models in which the brain is presented as a map with clear territories: this region does this while that region does that. But that model ignores the most important aspect of human brains: neurons connect promiscuously, such that no brain region works alone; instead, like a society, regions work in a constant hubbub of crosstalk and negotiation and cooperation. As we’ve seen, this widespread interaction is the neurological underpinning of human creativity. Even while particular skills can be restricted to local brain regions, creativity is a whole-brain experience: it arises from the sweeping collaboration of distant neural networks.14 As a result of this vast interconnectedness, human brains apply the three Bs to a wide range of our experiences. We constantly absorb our world, crunch it up, and release new versions.
Our versatility in applying these creative strategies is a great asset, because a mind-boggling variety can result from compounding a limited number of options. Think of what nature is able to make by rearranging DNA: plants and fish that live in the deepest recesses of the ocean, animals that graze and prowl on land, birds that soar through the sky, organisms that thrive in hot or cold climates, at high or low altitude, in rainforests or the desert – all created from different combinations of the same four nucleotides. Millions of species have come into being on our planet, from microscopic amoeba to building-size whales, all by reorganizing precedent. In the same way, our brains innovate thanks to a small repertoire of basic operations that alter and rearrange inputs. We take the raw materials of experience and then bend, break and blend them to create new outcomes. Set loose in the human brain, the three Bs provide an unending spring of new ideas and behaviors.
Other animals show signs of creativity, but humans are the standout performers. What makes us so? As we’ve seen, our brains interpose more neurons in areas between sensory input and motor output, allowing for more abstract concepts and more pathways through the circuitry. What’s more, our exceptional sociability compels humans to constantly interact and share ideas, with the result that everyone impregnates everyone else with their mental seeds. The miracle of human creativity is not that new ideas appear out of thin air, but that we devote so much brain real estate to developing them.
OVERT AND COVERT CREATIVITY
Your brain is running its creative software under the hood all the time. Every time you exaggerate, tell a lie, make a pun, create a new dish from leftovers, surprise your partner with a gift, plan a beach vacation or think about a relationship that might have been, you’re digesting and rebuilding memories and sensations that you’ve absorbed before.
As a result of human brains stampeding around the planet and running this software for millions of years, we are surrounded by creative output. Sometimes this refashioning of the world is easy to see – when, for example, a manufacturer proclaims a new model or you hear a remix of your favorite song. But more often, in the modern world, the ceaseless repurposing of inventions, ideas and experiences isn’t readily apparent.
Take YouTube. The site revolutionized how video was shared online. But it wasn’t easy to maintain that pole position. YouTube discovered early on that if they wanted to hold on to eyeballs, the videos had to stream without interruption. It’s no fun watching a video that stalls: when that happens, users click away.15 The emergence of high definition (HD) video aggravated the problem. HD files are large and require a lot of bandwidth to stream properly. If the bandwidth gets too narrow, the bytes get backed up and the video you’re watching freezes. Unfortunately, bandwidth fluctuates; that is under the control of your internet service provider, not YouTube. So the more users chose HD videos, the more their video experience was locking up. The company’s engineers faced a seemingly insurmountable difficulty. Without the ability to directly influence the bandwidth, how could they give their viewers reliable streaming?
Their solution was surprising and clever. YouTube videos are typically stored in three resolutions: high definition, standard and low. So the engineers devised software that broke the files of different resolutions into very short clips, like beads on a necklace. As video is being streamed to your computer, other software tracks the moment-to-moment fluctuations in bandwidth and feeds your computer the resolution that will make it through. What seems to you like an uninterrupted video is actually made up of thousands of tiny clips strung together. As long as there are enough high definition clips in your stream, you