Основы статистической обработки педагогической информации. Денис Владимирович Соломатин
Чтение книги онлайн.
Читать онлайн книгу Основы статистической обработки педагогической информации - Денис Владимирович Соломатин страница 8
2) Визуализация сама по себе, как правило, не является достаточной для полноценного исследования, потому что в последующей трансформации данных ключевое место занимают визуально обнаруживаемые тренды, наглядная фильтрация наблюдений, создание новых переменных и вычисление сводных данных.
3) Наконец, в исследовательском анализе данных, приходится сочетать визуализацию и преобразования с вашим любопытством и скептицизмом, чтобы задать и ответить на интересующие вопросы о данных.
Моделирование является важной частью исследовательской работы, но порой не хватает навыков, чтобы эффективно этому обучиться для многократного применения. Вернемся к моделированию, как только освоим большое количество инструментов для обработки и программирования данных.
Среди последующих глав, сконцентрированных на изложении инструментов исследования, присутствует описание рабочих процессов. В соответствующем разделе разбираются основы рабочего процесса, автоматизация сценариями, на примере готовых решений иллюстрируются ведущие практики написания и организации R-кода. Это настроит на успех в долгосрочной перспективе, так как даёт инструменты для реализации конкретных проектов.
Как было показано во введении, простой график приносит больше информация для ума аналитика, чем любое другое представление данных. Покажем, как визуализировать данные с помощью ggplot2. В R имеется несколько систем для построения графиков, но ggplot2 является одним из самых элегантных и самых универсальных, так как ggplot2 реализует графический язык, схожий в системе описания и построения графиков. С ggplot2, многое делается быстрее, изучив одну систему команд можно применять её в самых неожиданных местах.
Если хотите узнать больше о теоретической основе ggplot2, то прежде, чем продолжить, рекомендуется прочитать специализированную учебную литературу по компьютерной графике. А в данной главе сфокусируемся на ggplot2, как одном из основных членов библиотеки tidyverse. Для доступа к наборам данных, справке и функциям, которые мы будем использовать в этой главе, загрузите tidyverse запустив следующую строку кода на исполнение:
library(tidyverse)
Эта одна строка кода загружает ядро tidyverse, пакеты, которые будут использоваться практически при каждом анализе данных. После её выполнения в консоли показывается, какие функции из tidyverse конфликтуют с функциями в базе R (или из других пакетов, которые могли быть загружены). Если запустите этот код и получите сообщение «Ошибка в library(tidyverse) :нет пакета под названием ‘tidyverse’», то нужно будет сначала установить его, а затем снова запустить library() следующим образом:
install.packages("tidyverse")
library(tidyverse)
Достаточно однократно установить