Физика повседневности. От мыльных пузырей до квантовых технологий. Жак Виллен
Чтение книги онлайн.
Читать онлайн книгу Физика повседневности. От мыльных пузырей до квантовых технологий - Жак Виллен страница 5
Интенсивность звукового сигнала падает по мере удаления от источника. Действительно, излучаемая источником энергия распределяется равномерно во всех направлениях. При этом в отсутствие затухания общая энергия звуковой волны остается неизменной. На расстоянии R от источника эта энергия распределяется по площади сферы, пропорциональной R2. Таким образом, интенсивность звука при удалении от источника падает по закону 1/R2 (илл. 3). И это еще не учитывая рассеивающих явлений, поглощения и диффузии в среде, где распространяется звук!
Чтобы австралийский взрыв был услышан на Бермудских островах, интенсивность дошедшей туда волны должна оказаться достаточно заметной. А для этого необходимо, чтобы излучаемая источником волна была направлена на архипелаг и не рассеивалась в других направлениях. Чтобы волна распространялась соответствующим образом, нужно, чтобы у волновода были полностью отражающие стенки: непроницаемые и не поглощающие звук.
На каком же принципе основывается этот «акустический волновод» в океане? Можно предположить, что он аналогичен принципу оптических волноводов, который предполагает полное внутреннее отражение волн от стенок (см. главу 2, «Отражение и преломление световых волн»). Значит, происходит полное отражение акустических волн на границе между водой и воздухом? Нет! Скорость звука в воде намного выше, чем в воздухе (в холодном Гренландском море она составляет в среднем 1411 м/с, в теплом Средиземном море – 1554 м/с, в то время как скорость звука в воздухе при нормальных условиях равна 335 м/с). Это означает, что вода для звука является средой гораздо менее «плотной», чем воздух, – ситуация, прямо противоположная случаю распространения света.
3. Интенсивность звука, издаваемого говорящим, уменьшается как 1/R2 по мере удаления от него, при отсутствии препятствий или фокусировки звука в одном направлении
Отсюда следует, что условия полного отражения для звуковой волны, распространяющейся из воды в воздух, не соблюдаются. Когда исходящая от дна моря звуковая волна доходит до поверхности, всегда возникают преломленная и отраженная волны. Еще одно следствие: в случае акустической волны преломленный луч не отклоняется от вертикали, а, наоборот, приближается к ней.
Значит, предположение, что поверхность океана может быть отражающей поверхностью, неверно? Не так быстро! Фактически доля энергии, которая преломляется на границе между водой и воздухом, во многом зависит от угла падения и соотношения скоростей между средами. В случае очень разных скоростей, как в нашей ситуации, интенсивность преломленной (вышедшей в воздух) волны невелика вне зависимости от угла падения. Таким образом, на поверхности океана отражение почти полное: доказано, что не более 1 % интенсивности падающей звуковой волны, распространяющейся почти горизонтально, проходит из воды в воздух. Следовательно, поверхность океана, похоже, способна хорошо отражать звук