Физика повседневности. От мыльных пузырей до квантовых технологий. Жак Виллен

Чтение книги онлайн.

Читать онлайн книгу Физика повседневности. От мыльных пузырей до квантовых технологий - Жак Виллен страница 9

Физика повседневности. От мыльных пузырей до квантовых технологий - Жак Виллен

Скачать книгу

кажутся цветными, либо когда они излучают свет, будучи достаточно нагретыми (как кусок раскаленного железа), либо когда они освещены и «рассеивают» (иными словами, возвращают) часть полученного света извне. Свет, попадающий в глаза, обычно полихроматичен, то есть содержит излучения с различными длинами волны в разных пропорциях. Эта композиция и определяет воспринимаемый нами цвет. Таким образом, объект, поглощающий все световое излучение, кажется черным; объект, излучающий электромагнитное излучение всех длин волн от 400 до 800 нм с сопоставимой интенсивностью, выглядит белым.

      В глазу цветовое восприятие обеспечивается клетками, называемыми колбочками, которые выстилают заднюю поверхность сетчатки. Существует три типа колбочек (см. илл.), передающих сигналы в мозг, который интерпретирует их и получает визуальное ощущение цвета. Воспринимаемые цвета не ограничиваются цветами радуги или «спектральными цветами», которые возникают вследствие разложения белого света. Пурпурный, например, получается путем объединения красного (около 680 нм) и синего (около 480 нм) света. Кроме того, один и тот же воспринимаемый цвет может соответствовать свету самых разных композиций. Например, объект может казаться желтым, когда он излучает монохроматический свет длиной волны около 580 нм, или излучает свет видимого диапазона, лишенный своей сине-фиолетовой части, или даже комбинацию красного и зеленого светов.

      Чувствительность трех типов колбочек в зависимости от длины волны

      Цвет неба в хорошую погоду

      В то время как предсказать цвет моря непросто, цвет неба в хорошую погоду легко объясняется физическими принципами, выявленными английским физиком лордом Рэйли (Рэлеем) (1842–1919). В отсутствие облаков цвет неба определяется результатом взаимодействия солнечного излучения с компонентами атмосферы Земли, а именно с неоднородностями (флуктуациями) плотности молекул азота и кислорода.

      Как эти молекулы ведут себя, попав в поле солнечного излучения? Рассмотрим монохроматический свет, обладающий заданной длиной волны λ. Он представляет собой колеблющиеся в плоскостях, перпендикулярных направлению распространения света, с частотой υ магнитное и электрическое поля. Под действием колеблющегося электрического поля электроны в молекулах также колеблются с частотой υ. В результате и сама молекула становится маленьким излучателем, испуская свет той же частоты, что и падающая волна. Это похоже на то, как излучает электромагнитные радиоволны теле- или радиоантенна. В случае молекул и солнечного света длина его волны оказывается много большей размера молекул, и такое рассеяние называется «рассеянием Рэлея». Расчеты показывают, что интенсивность рассеянного света оказывается пропорциональной четвертой степени частоты υ4 (или 1/λ4). Это утверждение называется законом Рэлея – Джинса (илл. 2).

      2. Рассеяние света молекулами и закон Рэлея. Под воздействием падающего монохроматического света (a) молекулы переизлучают

Скачать книгу