Gastroenterological Endoscopy. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Gastroenterological Endoscopy - Группа авторов страница 64
10.5.2 Management of Colonic Perforation
Owing to the frequency and diversity of perforation types (mechanisms, size, and location), management remains controversial (
Fig. 10.2).60,61,62,63,64 Endoscopic techniques that have been used to close GI perforations in the setting of natural orifice translumenal endoscopic surgery (NOTES) and submucosal dissection have resulted in enhanced management strategies for perforations and are expected to evolve.Although most patients with colonic perforation require surgical intervention, some can be effectively managed conservatively, especially if the endoscopist is able to close the perforation endoscopically.65,66 The efficacy of clipping, in terms of intention to treat, is not fully determined; a review of 75 cases revealed a success rate ranging from 69 to 93%, without mortality in patients in whom endoscopic closure was achieved,66 but these values are probably overestimates. Key factors for endoscopic success are small perforations (<2 cm), early recognition, a clean bowel, and prompt and complete closure.67 Over-the-scope clips, such as the OVESCO (Ovesco Endoscopy, Germany), are being used with favorable results. A recent systematic review of all iatrogenic GI perforations reported clinically successful endoscopic closure in 90% using standard clips and 88% using over-the-scope clips.45 Although this likely does not represent a true comparison, it stresses the fact that, at least in the colon, standard TTS clips remain the first choice.59 Prospective randomized studies are needed to define the role of various techniques of endoscopic closures. When endoscopic treatment of a perforation is foreseen, CO2 insufflation (if not already used) should be immediately instituted and special attention given to a possible drop in blood pressure related to a decreased cardiac preload induced by intraperitoneal hypertension. Prompt peritoneal decompression should be performed by needle puncture. Conservative treatment consists of bowel rest, intravenous hydration, administration of broad-spectrum antibiotics, and close clinical monitoring. Successful closure is noted by clinical improvement within the first 48 hours. Such an approach can be considered for all patients who are in good clinical condition with localized symptoms of peritonitis and in whom the perforation is contained, either by endoscopic closure or by spontaneous sealing.67,68
Fig. 10.2 Intrarectal indometacin must be administered before any procedure performed on an intact papilla. High-risk patients (acinarization [a], multiple manipulations on a normal pancreas) may benefit from additional prevention of pancreatitis with PPS. If a guidewire is inserted into the pancreas, it can be left in place and may facilitate further biliary cannulation (b). At the end of the procedure, it is used to insert a PPS (5Fr, without proximal flaps) (c).
Surgical treatment is standard for patients with generalized peritonitis and/or objective failure of endoscopic closure, in patients who deteriorate under conservative treatment, and finally in patients presenting with colonic disease that otherwise requires surgery (such as colon cancer). Simple closure of the perforation is often possible in the absence of intraperitoneal fecal contamination; resection with immediate intestinal anastomosis and colectomy with temporary colostomy are alternatives.
The outcomes of patients with colonic perforation requiring surgery are associated with morbidity and mortality rates of 21 to 53% and 0 to 26%, respectively.57,58,68 Surgical site infection is frequent, and leading causes of death are cardiopulmonary complications and multiple organ failure.57,58
10.5.3 Bleeding
Bleeding is the most frequent complication after polypectomy (incidence: 0.3–6.1%).69,70 There is no evidence that aspirin or NSAID use increases the risk of bleeding after mucosal biopsy or polypectomy.71 However, the reader is referred to national societal guidelines concerning the management of anticoagulation and antiplatelet agents during endoscopy.5 The risk of bleeding depends on the type and size of the polyp and the technique of polypectomy.
Immediate bleeding occurring during endoscopy (1.5% of cases) must be differentiated from delayed bleeding occurring from a few hours to 1 month after polypectomy (2% of cases). In most cases, persistent active bleeding can be managed endoscopically using endoscopic hemostatic tools, such as snaring of residual stalks for compression, epinephrine injection, electrocautery (coagulation forceps or tip of the snare), endoloop, and clips. The use of cautery should be performed with caution owing to the thinness of the colonic wall. Immediate bleeding may be prevented by the use of pure coagulation for pedunculated polyps,72 epinephrine injection, clipping, or closing the stalk with an endoloop. No prophylactic measures have proved to be efficient in preventing delayed bleeding.73 Bleeding occurring during EMR or ESD is preferably managed by coagulation.74
10.5.4 Unusual Complications
Very rare adverse events associated with colonoscopy include glutaraldehyde-induced colitis (probably due to endoscope mishandling during reprocessing) and extracolonic trauma such as splenic rupture and liver hematoma due to excessive abdominal pressure exerted during difficult insertion.75,76
10.6 ERCP
ERCP has changed the paradigm of management of biliopancreatic diseases but is also one of the most demanding endoscopic procedures. In addition to adverse events common with upper GI endoscopic procedures, specific adverse events related to biliopancreatic manipulations include bleeding, perforation, infection, and pancreatitis77 (see
Table 10.2). According to a retrospective review of 21 studies, including 16,855 patients, the incidence rate of ERCP-related complications was 6.85% (1.67% were severe complications), with a mortality rate of 0.33%.78 These findings were confirmed in two prospective studies, including 7,252 patients, with an overall complication rate of 5.3% and mortality rate of 0.34%.79,80 Important factors modulating the risk of complications are the indication for ERCP and the case volume of the operator, which could be responsible for a two- to threefold increase in the rate of severe complications.81 For these reasons, the need for concentrating these procedures in high-volume centers has become more and more obvious over the last two decades.