This Is Rocket Science: True Stories of the Risk-taking Scientists who Figure Out Ways to Explore Beyond. Gloria Skurzynski
Чтение книги онлайн.
Читать онлайн книгу This Is Rocket Science: True Stories of the Risk-taking Scientists who Figure Out Ways to Explore Beyond - Gloria Skurzynski страница 4
Across the Atlantic a young German tried to recover from his country’s defeat in World War I. Like Tsiolkovsky, Hermann Oberth had been fascinated as a boy by Jules Verne’s novel From the Earth to the Moon. He said later that he’d read it “at least five or six times and, finally, knew [it] by heart.” Oberth realized that some of Verne’s ideas were not just science fiction, but real science. At age 14 Oberth designed a model rocket. He had no way to test it, but he delved into mathematics to teach himself propulsion theories.
After the war Oberth studied physics. In 1923 he wrote a paper called “By Rocket into Planetary Space,” and in 1929, in a longer version of the paper, he forecast “rockets…so [powerful] that they could be capable of carrying a man aloft.” In a footnote Oberth mentioned Goddard’s “A Method for Reaching Extreme Altitudes.”
Russia not only had lived through World War I but also had survived a turbulent revolution that increased its territory and gave rise to a new name: Union of Soviet Socialist Republics, or Soviet Union for short. When the Soviet newspaper Izvestia mentioned Oberth’s publication, Tsiolkovsky read it and saw the reference to Goddard’s work, which he hadn’t heard about. Tsiolkovsky decided to republish his own early articles about space travel and include with them a number of his newer theories.
PROFESSOR HERMANN OBERTH, (TO THE RIGHT OF THE LARGE ROCKET), GATHERS MEMBERS OF HIS DESIGN TEAM FOR A TEST FIRING. STUDENT WERNHER VON BRAUN IS SECOND FROM RIGHT.
These three scientists have been called the Fathers of Modern Rocketry. They never met and at first were unaware of each others’ ideas about rocket propulsion, yet they independently came to pretty much the same conclusions. All believed in the superiority of liquid fuels for rocket propulsion. Their research on liquid propellants inspired two men who would become key players in the 1950s space race between two superpowers.
Not long after Oberth wrote his “Planetary Space” paper, 13-year-old Wernher von Braun tied six skyrockets to a toy wagon and lit them. Belching smoke and flame, the little red wagon roared five blocks through a crowded Berlin street and then exploded. In the uproar that followed, police grabbed the boy and kept him in the police station until his furious father came to get him out.
His father’s anger didn’t put an end to von Braun’s fascination with rockets. Like so many other budding rocket scientists, he’d read the science fiction of Jules Verne and H. G. Wells. But he’d also read Oberth’s paper, which inspired him to learn calculus and trigonometry so he could understand the physics of rocketry. Later, as von Braun studied for his Ph.D. at the University of Berlin, he worked as an assistant to Professor Oberth, and in 1932 von Braun and a few other men began designing liquid-fuel rockets for the German military.
WERNHER VON BRAUN
In 1936 von Braun became technical director of Germany’s military rocket program. Soon, he and his team launched two liquid-fuel rockets that went a mile and a half high. Shortly after that, the Soviets, who’d also been working with liquid propulsion, fired a rocket that soared more than eight miles into the sky. And a month later, one of Robert Goddard’s rockets flew faster than the speed of sound. Von Braun and his team read about this in journals and used some of Goddard’s ideas in their own designs.
During World War II German military commanders, under the rule of Adolf Hitler, wanted to use rockets as deadly weapons of war—military missiles that could deliver explosive warheads onto enemy territory.
As has been true with all other rockets since the first fire arrows, no one person can be credited with the entire design of the German rocket. Tsiolkovsky, Oberth, and others had envisioned elements of this kind of rocket. Goddard had already launched his own version of a liquid-fuel rocket. Von Braun and his fellow rocket scientists worked at developing theirs at a facility named Peenemunde. As the war went on, it was hard for von Braun and his crew to find petroleum products, but German farms were producing bumper crops of potatoes. Potatoes can be distilled into ethyl alcohol. By combining ethyl alcohol with liquid oxygen, the German “Rocket Team” had what they needed. By 1944 they’d nearly perfected the deadly Vengeance Weapon 2 rocket, shortened to V-2. It had a 200-mile range and carried a 2-ton warhead.
THE V-2 ROCKET WAS BUILT AND TESTED AT A GERMAN FACILITY CALLED PEENEMUNDE.
In his 2007 book Red Moon Rising, journalist Matthew Brzezinski describes in detail the launch of a V-2 from the German-occupied Dutch coast. He writes, “Twenty-five seconds had elapsed since liftoff. During that period, the rocket had shed six thousand pounds.” That’s 6,000 pounds of liquid propellant burned off and converted into thrust. “At an altitude of seventeen miles, the turbine shut down, cutting off fuel to the combustion chamber. Now the rocket was a projectile, a forty-six-foot-long artillery shell…moving at 3,500 miles per hour.”
That V-2 rocket reached an altitude of 52 miles before gravity curved it downward to eventually land with a tremendous explosion in London. By the end of the war, of the almost 6,000 V-2 rockets the Germans had built, 3,500 had been launched—40 percent of them aimed at England. The damage was ruinous.
When the war neared its final days, the United States and the Soviet Union both wanted the designs for the V-2 rockets as well as the engineers who’d built them. Entering Germany with their invading armies, Soviet and American intelligence teams began searching through German installations for any V-2 parts and engineers they could find. The Soviet team included Sergei Korolev.
As a teenager Korolev had spent hours watching seaplanes and gliders at a naval airstrip near his home in Odessa, a major port in the Soviet Republic of Ukraine. The pilots grew so used to young Korolev hanging around that they let him work on the planes and even took him for flights. At 17 Korolev joined an amateur aircraft club and later entered college to study aeronautical engineering. After graduation he joined GIRD, a Soviet research group working on rocket propulsion.
Then came horrible times for Korolev. In 1938, in a political purge ordered by the leader of the Soviet Union, Josef Stalin, Korolev was accused of “subversion in a new field of technology” and was sent to concentration camps in Siberia, where he nearly died from beatings and starvation. Later, the Soviets realized the value of his expertise and transferred him to a prison where he could continue his rocket research. In 1944, after he’d gathered V-2 information in Germany, he returned to Moscow and began to design military missiles based on the German rockets. But he was more interested in developing rockets for space travel than for warfare. About one of his designs he said angrily, “The purpose of this rocket is to get there! [He pointed to the sky.] This is not some military toy!”
Конец ознакомительного фрагмента.
Текст