The Origin of Species. Charles Darwin

Чтение книги онлайн.

Читать онлайн книгу The Origin of Species - Charles Darwin страница 25

The Origin of Species - Charles  Darwin

Скачать книгу

widely, and will give rise to the greatest number of new varieties and species. They will thus play a more important part in the changing history of the organic world.

      In accordance with this view, we can, perhaps, understand some facts which will be again alluded to in our chapter on Geographical Distribution; for instance, the fact of the productions of the smaller continent of Australia now yielding before those of the larger Europaeo-Asiatic area. Thus, also, it is that continental productions have everywhere become so largely naturalised on islands. On a small island, the race for life will have been less severe, and there will have been less modification and less extermination. Hence, we can understand how it is that the flora of Madeira, according to Oswald Heer, resembles to a certain extent the extinct tertiary flora of Europe. All fresh water basins, taken together, make a small area compared with that of the sea or of the land. Consequently, the competition between fresh water productions will have been less severe than elsewhere; new forms will have been more slowly produced, and old forms more slowly exterminated. And it is in fresh water basins that we find seven genera of Ganoid fishes, remnants of a once preponderant order: and in fresh water we find some of the most anomalous forms now known in the world, as the Ornithorhynchus and Lepidosiren, which, like fossils, connect to a certain extent orders at present widely separated in the natural scale. These anomalous forms may be called living fossils; they have endured to the present day, from having inhabited a confined area, and from having been exposed to less varied, and therefore less severe, competition.

      To sum up, as far as the extreme intricacy of the subject permits, the circumstances favourable and unfavourable for the production of new species through natural selection. I conclude that for terrestrial productions a large continental area, which has undergone many oscillations of level, will have been the most favourable for the production of many new forms of life, fitted to endure for a long time and to spread widely. While the area existed as a continent the inhabitants will have been numerous in individuals and kinds, and will have been subjected to severe competition. When converted by subsidence into large separate islands there will still have existed many individuals of the same species on each island: intercrossing on the confines of the range of each new species will have been checked: after physical changes of any kind immigration will have been prevented, so that new places in the polity of each island will have had to be filled up by the modification of the old inhabitants; and time will have been allowed for the varieties in each to become well modified and perfected. When, by renewed elevation, the islands were reconverted into a continental area, there will again have been very severe competition; the most favoured or improved varieties will have been enabled to spread; there will have been much extinction of the less improved forms, and the relative proportional numbers of the various inhabitants of the reunited continent will again have been changed; and again there will have been a fair field for natural selection to improve still further the inhabitants, and thus to produce new species.

      That natural selection generally acts with extreme slowness I fully admit. It can act only when there are places in the natural polity of a district which can be better occupied by the modification of some of its existing inhabitants. The occurrence of such places will often depend on physical changes, which generally take place very slowly, and on the immigration of better adapted forms being prevented. As some few of the old inhabitants become modified the mutual relations of others will often be disturbed; and this will create new places, ready to be filled up by better adapted forms; but all this will take place very slowly. Although all the individuals of the same species differ in some slight degree from each other, it would often be long before differences of the right nature in various parts of the organisation might occur. The result would often be greatly retarded by free intercrossing. Many will exclaim that these several causes are amply sufficient to neutralise the power of natural selection. I do not believe so. But I do believe that natural selection will generally act very slowly, only at long intervals of time, and only on a few of the inhabitants of the same region. I further believe that these slow, intermittent results accord well with what geology tells us of the rate and manner at which the inhabitants of the world have changed.

      Slow though the process of selection may be, if feeble man can do much by artificial selection, I can see no limit to the amount of change, to the beauty and complexity of the coadaptations between all organic beings, one with another and with their physical conditions of life, which may have been effected in the long course of time through nature’s power of selection, that is by the survival of the fittest.

       Extinction Caused by Natural Selection.

      This subject will be more fully discussed in our chapter on Geology; but it must here be alluded to from being intimately connected with natural selection. Natural selection acts solely through the preservation of variations in some way advantageous, which consequently endure. Owing to the high geometrical rate of increase of all organic beings, each area is already fully stocked with inhabitants, and it follows from this, that as the favoured forms increase in number, so, generally, will the less favoured decrease and become rare. Rarity, as geology tells us, is the precursor to extinction. We can see that any form which is represented by few individuals will run a good chance of utter extinction, during great fluctuations in the nature or the seasons, or from a temporary increase in the number of its enemies. But we may go further than this; for as new forms are produced, unless we admit that specific forms can go on indefinitely increasing in number, many old forms must become extinct. That the number of specific forms has not indefinitely increased, geology plainly tells us; and we shall presently attempt to show why it is that the number of species throughout the world has not become immeasurably great.

      We have seen that the species which are most numerous in individuals have the best chance of producing favourable variations within any given period. We have evidence of this, in the facts stated in the second chapter, showing that it is the common and diffused or dominant species which offer the greatest number of recorded varieties. Hence, rare species will be less quickly modified or improved within any given period; they will consequently be beaten in the race for life by the modified and improved descendants of the commoner species.

      From these several considerations I think it inevitably follows, that as new species in the course of time are formed through natural selection, others will become rarer and rarer, and finally extinct. The forms which stand in closest competition with those undergoing modification and improvement, will naturally suffer most. And we have seen in the chapter on the Struggle for Existence that it is the most closely-allied forms—varieties of the same species, and species of the same genus or related genera—which, from having nearly the same structure, constitution and habits, generally come into the severest competition with each other. Consequently, each new variety or species, during the progress of its formation, will generally press hardest on its nearest kindred, and tend to exterminate them. We see the same process of extermination among our domesticated productions, through the selection of improved forms by man. Many curious instances could be given showing how quickly new breeds of cattle, sheep and other animals, and varieties of flowers, take the place of older and inferior kinds. In Yorkshire, it is historically known that the ancient black cattle were displaced by the long-horns, and that these “were swept away by the short-horns” (I quote the words of an agricultural writer) “as if by some murderous pestilence.”

       Divergence of Character

      The principle, which I have designated by this term, is of high importance, and explains, as I believe, several important facts. In the first place, varieties, even strongly-marked ones, though having somewhat of the character of species—as is shown by the hopeless doubts in many cases how to rank them—yet certainly differ far less from each other than do good and distinct species. Nevertheless according to my view, varieties are species in the process of formation, or are, as I have called them, incipient species. How, then, does the lesser difference between varieties become augmented into the greater difference between species? That this does habitually happen, we must infer from most of the innumerable species throughout nature presenting

Скачать книгу