Оглянись – пришельцы рядом!. Михаил Ахманов

Чтение книги онлайн.

Читать онлайн книгу Оглянись – пришельцы рядом! - Михаил Ахманов страница 6

Оглянись – пришельцы рядом! - Михаил Ахманов

Скачать книгу

А.С. Варшавского). Кто-то из них двоих назвал 195 955 200 000 000 цифрой, а это, разумеется, число (о чем знают даже школьники третьего класса). Что же касается всего остального, то мудрость древних греков, «которые были в какой-то степени нашими учителями», Кераму впрок не пошла. Во-первых, не надо обижать древних греков; они наши учителя не в какой-то степени, а в самой прямой. Во-вторых, не стоит стричь их под одну гребенку; быть может, козопас с аттических холмов не умел считать до десяти тысяч, но были же среди греков и другие люди – Пифагор, Евклид, Демокрит, Архимед! Кстати, Архимед разработал систему обозначения чисел вплоть до такого чудовищного числа, которое больше миллиона на миллиард миллиардов порядков! Чтобы восхититься этим фактом, не надо шарить в трудах историков науки; достаточно раскрыть «Энциклопедический словарь юного математика» и прочитать статью о числах.

      Несколько слов о понятии «миллион», неизвестном глупым европейским математикам вплоть до девятнадцатого века. Кажется, Керам считает, что чем больше число по модулю, тем сложнее с ним оперировать. Но это вовсе не так; пресловутое число 195 955 200 000 000 намного больше десятичной дроби 0,195955200711816543797, но оперировать с этой дробью сложнее (умножьте число и дробь на 3,14 и убедитесь в этом сами). Дело не в том, сколь велико число по абсолютной величине, а сколько в нем разрядов, иначе говоря, цифр. Европейские же математики прекрасно умели оперировать с многоразрядными числами уже в шестнадцатом столетии. Упоминавшийся выше Лудольф ван Цейлен вычислил «пи» с тридцатью пятью десятичными знаками, а Генри Бриггс опубликовал в 1624 г. первую таблицу логарифмов с четырнадцатью знаками для целых чисел от 1 до 20 000, и от 90 000 до 100 000. Вы только вообразите себе объем вычислительной работы Бриггса! Так что не будем ставить телегу впереди лошади и утверждать, что лишь в девятнадцатом веке европейские математики открыли то, что было известно жрецам Двуречья.

      Теперь рассмотрим замечание о математическом ряде, конечный итог которого выражается «цифрой» 195 955 200 000 000. Прочитаешь такое, и хочется рыдать. О каком «математическом ряде» и «конечном итоге» идет речь? Ряд – строго определенное математическое понятие; есть ряды числовые и функциональные, конечные и бесконечные, сходящиеся и расходящиеся (кстати, Архимед первым ввел представление о бесконечном числовом ряде, определив сумму бесконечной геометрической прогрессии со знаменателем 1/4). Ряд задается первым членом и формулой общего члена либо перечислением всех членов ряда; некоторые ряды можно просуммировать, а некоторые нельзя. Словом, ряд – непростая механика!

      Что же мы имеем на клинописных табличках с холма Куюнджик? Из текста Керама, бездумно переписанного Горбовским, ничего определенного понять нельзя. Но я думаю, что там, на тех табличках, все-таки был не ряд Фурье и не разложение по функциям Бесселя. Тогда что же? Либо пустота, либо плод фантазии Керама, либо конечный числовой ряд, а таинственное слово «итог» обозначает его сумму. Сам я этих табличек не видел, клинопись читать не умею, и Кераму – после всех отмеченных выше

Скачать книгу