Resumen De Algoritmos Para Vivir. Readtrepreneur Publishing

Чтение книги онлайн.

Читать онлайн книгу Resumen De Algoritmos Para Vivir - Readtrepreneur Publishing страница 2

Resumen De Algoritmos Para Vivir - Readtrepreneur Publishing

Скачать книгу

los programas informáticos; la gente puede utilizarlos para obtener los resultados deseados o, al menos, para afrontar mejor los resultados no deseados.

      Aunque los algoritmos se usan ampliamente para hacer cálculos, no son nociones puramente matemáticas. Seguir una receta, tejer un suéter basado en un patrón, golpear un pedernal con el borde de una cornamenta, todo esto implica algoritmos. Han sido parte de la tecnología desde la Edad de Piedra.

      Algoritmos simples pueden ser usados para resolver mejor y más rápido los problemas humanos. Las dificultades con las que la gente se enfrenta pueden parecer únicas para nosotros, pero también se encuentran en la naturaleza y pueden ser analizadas por las computadoras.

      La informática nos proporciona un vocabulario para comprender los principios. No solo nos ayudan a superar nuestros desafíos, sino que también pueden enseñarnos sobre la mente, la racionalidad y cómo vivir más fructíferamente. Pensar en términos de algoritmos y aprender sobre las estructuras de los problemas y sus soluciones nos hace entender dónde somos buenos y por qué cometemos errores. Esta comprensión nos permite optimizarnos a nosotros mismos y a las cosas que encontramos en la vida.

      Cada uno de los capítulos trata de aplicaciones específicas:

      Parada óptima —cuando dejar de buscar algo—

      Capítulo 2: Explorar/Explotar —elegir entre lo conocido y lo nuevo—

      Clasificar —cómo organizar varias cosas—

      Capítulo 4: Almacenamiento en caché —cómo usar los cachés para una mejor organización y recuerdo—

      Capítulo 5: Programación —la mejor manera de manejar el tiempo—

      Capítulo 6: La Regla de Bayes —cómo usar los algoritmos para predecir el futuro—

      Capítulo 7: Sobrecarga —por qué pensar menos es más sabio a veces—

      Capítulo 8: Relajación —resolver un problema relajando algunas partes del mismo—

      Redes —cómo se hacen las conexiones—

      Capítulo 11: Teoría de Juegos —cómo vencer a los juegos de recursividad—

      Cada capítulo relaciona los algoritmos particulares con numerosas cosas y da consejos factibles para resolver problemas difíciles. El libro comienza con Parada Óptima o cuándo dejar de buscar la mejor opción.

       BONOS GRATUITOS

       P.D. ¿Está bien si nos excedemos en la entrega?

      Aquí en Readtrepreneur Publishing, creemos en la entrega excesiva más allá de las expectativas de nuestros lectores. ¿Está bien si entregamos más de la cuenta?

      Este es el trato, le daremos un resumen en PDF extremadamente condensado del libro que acaba de leer y mucho más...

      ¿Cuál es la trampa? Tenemos que confiar en usted... Verá, queremos entregar más de lo necesario y para ello tenemos que confiar en que nuestro lector se guarde este bono en secreto... ¿Por qué? Porque no queremos que la gente reciba nuestros resúmenes exclusivos en PDF incluso sin comprar nuestros libros. No es ético, ¿verdad?

      Bien... ¿Están listos?

      En primer lugar, recuerde que su libro es un código: "READ07".

      A continuación, visita este enlace: http://bit.ly/exclusivepdfs

      Todo lo demás se explicará por sí mismo después de que lo hayas visitado: http://bit.ly/exclusivepdfs.

      ¡Esperamos que disfrute de nuestros bonos gratuitos tanto como nosotros disfrutamos preparándolos para usted!

       Capítulo 1. Parada óptima - Cuándo dejar de buscar

      Una cosa que dificulta la vida es no saber cuando parar —esto ha sido etiquetado como el Problema de Parada Optima—. Existe el peligro de dejarlo demasiado pronto y perder algo bueno, o dejarlo demasiado tarde y agotar la poca energía y tiempo que tenemos.

      Afortunadamente, hay un algoritmo que hará las decisiones mucho más fáciles. No es del todo infalible, pero producirá mejores resultados que hacer las cosas al azar.

      El problema de la detención óptima no se refiere a qué opción seleccionar sino a cuántas opciones considerar. Basado en datos estadísticos, el porcentaje ideal es del 37%.

      El Problema de la Secretaría explora la idea de la Parada Óptima. Alguien encargado de contratar a una secretaria tiene que elegir entre los solicitantes, pero debe saber cuándo parar para no perderse a alguien que es bueno para el trabajo.

      En la búsqueda de la secretaria, parar tarde significa prolongar la elección innecesariamente, mientras que parar demasiado pronto deja al mejor solicitante sin contratar. La estrategia es encontrar un equilibrio razonable entre las dos condiciones.

      Elegir la mejor opción entre las disponibles significa que por cada opción adicional, cada una tendrá menos posibilidades de ser la mejor elección. Un solicitante puede ser considerado como el mejor disponible ya que no hay otro competidor. Si hay dos solicitantes, cada uno de ellos tendrá una probabilidad de 50/50 para ello, y así sucesivamente.

      Se dice que la solución ideal es la regla de "mirar y luego leer". Establecer un período de tiempo específico para "mirar" o explorar las opciones y reunir información sobre ellas; durante este tiempo, no se elige ninguna opción. Después de esto, llega la etapa del "salto" y te comprometes con la mejor hasta el momento.

      Con esta estrategia, tomar el mejor solicitante después de ver un número de solicitantes da una tasa de éxito que se acerca al 37%. En particular, las posibilidades de conseguir el mejor después de 3 solicitantes es del 50%; después de 5 solicitantes, se convierte en el 43,33%, después de 10 es del 39,87%, después de 50 es del 37,43%, después de 100 es del 37,10%, después de mil es del 36,81%. Cuantos más solicitantes haya, más se acerca el porcentaje al 37%.

      Esto implica que seguir la técnica de "mirar y luego leer" dará un 37% de posibilidades de conseguir al mejor solicitante. Aunque esto significa que fallarás el 63% de las veces, es mejor que elegir a alguien al azar. En 100 solicitantes, hay un 1% de probabilidad de que un solicitante seleccionado al azar sea el mejor de todos. Si hay un millón de ellos, la probabilidad disminuye al 0.0001%. Cuantas más selecciones tenga, menores serán sus posibilidades de obtener la óptima si selecciona al azar.

      Curiosamente, la tasa de éxito seguirá siendo del 37% independientemente del número de opciones que haya; es decir, si sigues la estrategia de "mirar y luego leer". Una vez más, aunque no consiga identificar el mejor absoluto, tendrá un mayor éxito que al seleccionar cualquier cosa o persona si practica la parada óptima. Otra cosa importante de esta regla es que no solo se aplica al número de solicitantes, sino que también puede utilizarse durante el tiempo de búsqueda.

      La Parada Óptima puede aplicarse también a otras preocupaciones. Por ejemplo, la cuestión de seleccionar

Скачать книгу