Загадка падающей кошки и фундаментальная физика. Грегори Гбур

Чтение книги онлайн.

Читать онлайн книгу Загадка падающей кошки и фундаментальная физика - Грегори Гбур страница 7

Загадка падающей кошки и фундаментальная физика - Грегори Гбур

Скачать книгу

которое повлекло за собой чуть ли не 200 лет объяснений (неверных) феномена падающей кошки, – было напечатано в 1700 г. и озаглавлено Sur le corps qui nagent dans des liqueurs, что можно перевести как «О телах, плавающих в жидкостях»[13]. На первый взгляд тема сообщения никак не связана с физикой падающих кошек, но первое впечатление может быть обманчивым, особенно если в деле замешан такой эклектик, как Паран.

      В статье Парана речь идет о плавучести объектов, погруженных в воду. Еще в 250 г. до н. э. греческий философ и математик Архимед первым объявил, что выталкивающая сила, действующая на погруженный объект, равна весу воды, вытесненной этим объектом. Таким образом, на любое погруженное тело действуют две силы: сила тяготения, тянущая его вниз, и сила выталкивания, толкающая его вверх. Если объект тяжелее той воды, которую он вытесняет, он утонет; если легче, будет плавать.

      Плотность воды в глубоком водоеме увеличивается с глубиной, а значит, вес фиксированного объема воды тем больше, чем глубже этот объем находится. Поэтому деревянный шар, который весит меньше, чем эквивалентный ему сферический объем воды на поверхности водоема, будет вытолкнут наверх и закачается на поверхности; свинцовый шар, весящий больше, чем эквивалентный ему сферический объем воды вблизи дна водоема, утонет и опустится на дно. Но если мы изготовим шар, представляющий собой небольшой свинцовый сердечник в деревянной оболочке, как показано на рисунке слева, то можно так подобрать размер сердечника, чтобы объект в целом погрузился в воду и «завис» на некоторой глубине под поверхностью воды; он там «парит», говоря словами Парана.

      Но что, если шар сделать асимметричным: вставить свинцовый сердечник в стороне от геометрического центра деревянного шара, как показано на правом рисунке? Тогда центр тяжести комбинированного шара окажется не в его центре, а ближе к свинцовому сердечнику. Каким будет поведение этого шара в сравнении с поведением шара с центральным сердечником?

      Данный вопрос на тот момент был уже рассмотрен: сделал это за несколько десятилетий до Парана итальянский физик Джованни Альфонсо Борелли в своем двухтомном труде 1685 г. De Motu Animalium – «Движение животных». Борелли интересовался изучением различных движений животных и составляющих их мышц средствами математики и физики. Благодаря важным исследованиям в этой области и твердому убеждению, что животных можно рассматривать как сложные автоматы, Борелли сегодня часто называют «отцом биомеханики».

      К исследованию задачи плавания шара в жидкости Борелли подтолкнул интерес к тому, как двигаются в воде животные. Рассматривая случай неравномерно плотного шара, Борелли утверждал, что если такой шар будет падать с высоты в толщу воды тяжелой стороной кверху, то сначала он опустится до уровня, где силы плавучести и тяготения уравновешивают друг друга, и только потом повернется вокруг собственного центра, пока центр тяжести – свинцовый сердечник – не окажется в самом низу.

      Паран

Скачать книгу


<p>13</p>

Parent, “Sur les corps qui nagent dans des liqueurs”.