Совместимость. Как контролировать искусственный интеллект. Стюарт Рассел

Чтение книги онлайн.

Читать онлайн книгу Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел страница 6

Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел

Скачать книгу

химических реакций.

      Огромным шагом вперед стало появление потенциала действия – разновидности электрической сигнализации, возникшей у одноклеточных организмов около 1 млрд лет назад. Впоследствии многоклеточные организмы выработали специализированные клетки, нейроны, которые с помощью электрических потенциалов быстро – со скоростью до 120 м/с, или 430 км/ч – передают сигналы в организме. Связи между нейронами называются синапсами. Сила синаптической связи определяет меру электрического возбуждения, проходящего от одного нейрона к другому. Изменяя силу синаптических связей, животные учатся[11]. Обучаемость дает громадное эволюционное преимущество, поскольку позволяет животному адаптироваться к широкому спектру условий. Кроме того, обучаемость ускоряет темп самой эволюции.

      Первоначально нейроны были сгруппированы в нервные узлы, которые распределялись по всему организму и занимались координацией деятельности, скажем, питания и выделения, или согласованным сокращением мышечных клеток в определенной области тела. Изящные пульсации медузы – результат действия нервной сети. У медузы нет мозга.

      Мозг возник позднее, вместе со сложными органами чувств, такими как глаза и уши. Через несколько сот миллионов лет после появления медузы с ее нервными узлами появились мы, люди, существа с большим головным мозгом – 100 млрд (1011) нейронов и квадриллион (1015) синапсов. Медленное в сравнении с электрическими цепями «время цикла» в несколько миллисекунд на каждое изменение состояния является быстрым по сравнению с большинством биологических процессов. Человеческий мозг часто описывается своими владельцами как «самый сложный объект во Вселенной», что, скорее всего, неверно, но хорошее оправдание тому факту, что мы до сих пор очень слабо представляем себе, как он работает. Мы очень много знаем о биохимии нейронов и синапсов в анатомических структурах мозга, но о нейронной реализации когнитивного уровня – обучении, познании, запоминании, мышлении, планировании, принятии решений и т. д. – остается по большей части гадать[12]. (Возможно, это изменится с углублением нашего понимания ИИ или создания все более точных инструментов измерения мозговой активности.) Итак, читая в СМИ, что такое-то средство реализации ИИ «работает точно так же, как человеческий мозг», можно подозревать, что это чье-то предположение или чистый вымысел.

      В сфере сознания мы в действительности не знаем ничего, поэтому и я ничего не стану об этом говорить. Никто в сфере ИИ не работает над наделением машин сознанием, никто не знает, с чего следовало бы начинать такую работу, и никакое поведение не имеет в качестве предшествующего условия сознание. Допустим, я даю вам программу и спрашиваю: «Представляет ли она угрозу для человечества?» Вы анализируете код и видите – действительно, если его запустить, код составит и осуществит план, результатом которого станет уничтожение человеческой расы, как шахматная программа

Скачать книгу


<p>11</p>

Сантьяго Рамон-и-Кахаль в 1894 г. предположил, что изменения синапсов являются признаком обучения, но эта гипотеза была экспериментально подтверждена только в конце 1960-х гг. См.: Timothy Bliss and Terje Lomo, “ Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology 232 (1973): 331–56.

<p>12</p>

Краткое введение см. в статье: James Gorman, “Learning how little we know about the brain,” The New York Times, November 10, 2014. См. также: Tom Siegfried, “There’s a long way to go in understanding the brain,” ScienceNews, July 25, 2017. Специальный выпуск журнала Neuron в 2014 г. (vol. 94, pp. 933−1040) дает общее представление о множестве подходов к пониманию головного мозга.